Universidade Federal de Alagoas Maceió, 12 de Março de 2025

Resumo do Componente Curricular

Dados Gerais do Componente Curricular
Tipo do Componente Curricular: DISCIPLINA
Unidade Responsável: PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA (11.00.43.56.07)
Curso: INFORMÁTICA/PPGI - Maceió - MESTRADO ACADÊMICO
Código: PPGI01604
Nome: TÓPICOS ESPECIAIS EM ENGENHARIA DE SISTEMAS COMPUTACIONAIS: COMPUTAÇÃO APLICADA À EDUCAÇÃO
Carga Horária Teórica: 60 h.
Carga Horária Prática: 0 h.
Carga Horária Total: 60 h.
Pré-Requisitos:
Co-Requisitos:
Equivalências:
Excluir da Avaliação Institucional: Não
Matriculável On-Line: Sim
Horário Flexível da Turma: Não
Horário Flexível do Docente: Sim
Obrigatoriedade de Nota Final: Sim
Pode Criar Turma Sem Solicitação: Não
Necessita de Orientador: Não
Exige Horário: Sim
Permite CH Compartilhada: Não
Permite Múltiplas Aprovações: Não
Quantidade de Avaliações: 1
Ementa/Descrição: Fundamentos básicos sobre metodologia de pesquisa científica para o planejamento, implementação e validação (definição de experimentos e análise de dados) de tecnologias/softwares educacionais. Engenharia de Software Educacional (métodos e processos para desenvolvimento de sistemas educacionais, linhas de produto para autoria de conteúdo, etc). Educação a Distância. Aprendizagem Colaborativas com Suporte Educacional (CSCL). Objetos de aprendizagem. Gamificação e jogos educacionais. Mineração de dados educacionais. Sistemas tutores inteligentes. Web Social e Web Semântica (e.g. ontologias) na Educação. Computação afetiva em sistemas educacionais.
Referências: Doroudi, S. (2022). The intertwined histories of artificial intelligence and education. International Journal of Artificial Intelligence in Education, 1-44. https://doi.org/10.1007/s40593-022-00313-2 • Cao, L., & Dede, C. (2023). Navigating A World of Generative AI: Suggestions for Educators. The Next Level Lab at Harvard Graduate School of Education. President and Fellows of Harvard College: Cambridge, MA https://nextlevellab.gse.harvard.edu/files/2023/08/Cao_Dede_final_8.4.23.pdf • Miao, F. & Holmes, W. (2023) Guidance for generative AI in education and research. UNESCO Publishing. https://unesdoc.unesco.org/ark:/48223/pf0000386693 • Baker, R. S. (2021). Artificial intelligence in education: Bringing it all together. OECD Digital Education Outlook 2021 Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. https://doi.org/10.1787/f54ea644-en • Isotani, S., Bittencourt, I. I., Challco, G. C., Dermeval, D., & Mello, R. F. (2023, June). AIED Unplugged: Leapfrogging the Digital Divide to Reach the Underserved. In International Conference on Artificial Intelligence in Education (pp. 772-779). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-36336-8_118 • Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2017). Chapter 24: Instruction based on adaptive learning technologies. In R. E. Mayer & P. Alexander (Eds.), Handbook of research on learning and instruction (2nd ed., pp. 522-560). New York: Routledge. https://doi.org/10.4324/9781315736419 • Chapter 3: Personalisation of learning: Towards hybrid human-AI learning technologies. OECD Digital Education Outlook 2021 : Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots. https://doi.org/10.1787/2cc25e37-en • Li, S., & Gu, X. (2023). A Risk Framework for Human-centered Artificial Intelligence in Education: Based on Literature Review and Delphi–AHP Method. Educational Technology & Society, 26(1), 187-202. https://doi.org/10.30191/ETS.202301_26(1).0014 • Baker, R. S., & Hawn, A. (2022). Algorithmic bias in education. International Journal of Artificial Intelligence in Education, 1052–1092. https://doi.org/10.1007/s40593-021-00285- 9 • Pammer-Schindler, V., & Rosé, C. (2022). Data-related ethics issues in technologies for informal professional learning. International Journal of Artificial Intelligence in Education, 609–635. https://link.springer.com/article/10.1007/s40593-021-00259-x • VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227-265 https://learnlab.org/opportunities/summer/readings/06IJAIED.pdf • Luckin, R; Holmes, W; (2016) Intelligence Unleashed: An argument for AI in Education. UCL Knowledge Lab: London, Uk. https://discovery.ucl.ac.uk/id/eprint/1475756/ • Nye, B. D. (2015). Intelligent tutoring systems by and for the developing world: A review of trends and approaches for educational technology in a global context. International Journal of Artificial Intelligence in Education, 25(2), 177-203. https://doi.org/10.1007/s40593-014-0028-6 • Romero, C., Ventura, S., & García, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. https://doi.org/10.1016/j.compedu.2007.05.016 • Bittencourt, I. I., Chalco, G., Santos, J., Fernandes, S., Silva, J., Batista, N., ... & Isotani, S. (2023). Positive Artificial Intelligence in Education (P-AIED): A Roadmap. International Journal of Artificial Intelligence in Education, 1-61. https://link.springer.com/article/10.1007/s40593-023-00357-y • Ifenthaler, D. (2021). Learning analytics for school and system management. OECD Digital Education Outlook 2021 Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots: Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots, 161. https://doi.org/10.1787/d535b828-en • Unicef. (2018). Early warning systems for students at risk of dropping out. Unicef Series on Education Participation and Dropout Prevention, 2. Chapter 1: Frontiers of smart education technology: Opportunities and challenges. OECD Digital Education Outlook 2021 : Pushing the Frontiers with Artificial Intelligence, Blockchain and Robots • Miao, F., Holmes, W., Huang, R., & Zhang, H. (2021). AI and education: A guidance for policymakers. UNESCO Publishing. • Koedinger, K. R., Booth, J. L., & Klahr, D. (2013). Instructional complexity and the science to constrain it. Science, 342(6161), 935-937.

SIGAA | NTI - Núcleo de Tecnologia da Informação - (82) 3214-1015 | Copyright © 2006-2025 - UFAL - sig-app-1.srv1inst1 v4.9.3_s.242 12/03/2025 01:37