Ementa/Descrição: |
Equações diferenciais de primeira ordem: equações lineares e não lineares, aspectos sobre a existência e unicidade das soluções, equações exatas, equações separáveis e fatores integrantes. Aplicações. Equações lineares de segunda ordem: propriedades das soluções da equação homogênea, método dos coeficientes a determinar e método de variação de parâmetros e aplicações às oscilações lineares. Equações lineares de ordem mais alta. Soluções em série para equações lineares de segunda ordem. A Transformada de Laplace. Sistemas de equações lineares de primeira ordem: sistemas com coeficientes constantes e solução geral, sistemas com coeficientes variáveis e propriedades das soluções (matriz fundamental). Noções da Teoria de Estabilidade: sistemas autônomos no plano, plano de fase, órbitas, soluções de equilíbrio, soluções e soluções periódicas, estabilidade de sistemas lineares perturbados. Aplicações: o pêndulo amortecido, espécies em competição (presa-predador). O método direto de Liapunov. |