Ementa/Descrição: |
Topologia do espaço Euclidiano n-dimensional. Continuidade de funções reais de n variáveis reais. Diferenciabilidade de funções reais de n variáveis reais: o Teorema de Schwarz, a fórmula de Taylor, máximos e mínimos e funções convexas. Funções Implícitas: função implícita, hipersuperfícies e multiplicadores de Lagrange. Aplicações diferenciáveis: a derivada como transformação linear, várias funções implícitas e o Teorema da Aplicação Inversa. Integrais Múltiplas: definição de integral, conjuntos de medida nula, condição de integrabilidade (Teorema de Lebesgue), conjuntos J-mensuráveis, a integral como limite de somas de Riemann e mudança de variáveis. |