# Accepted Manuscript

First description of clonal lineage type II (genotype #1) of *Toxoplasma gondii* in abortion outbreak in goats

Júnior Mário Baltazar de Oliveira, Jonatas Campos de Almeida, Renata Pimentel Bandeira de Melo, Luiz Daniel de Barros, João Luis Garcia, Müller Ribeiro Andrade, Wagnner José Nascimento Porto, Javier Regidor-Cerrillo, Luis Miguel Ortega-Mora, Andréa Alice da Fonseca Oliveira, Rinaldo Aparecido Mota



PII: S0014-4894(17)30478-2

DOI: 10.1016/j.exppara.2018.03.008

Reference: YEXPR 7538

- To appear in: Experimental Parasitology
- Received Date: 28 August 2017
- Revised Date: 15 January 2018

Accepted Date: 7 March 2018

Please cite this article as: de Oliveira, Jú.Má.Baltazar., de Almeida, J.C., de Melo, R.P.B., de Barros, L.D., Garcia, Joã.Luis., Andrade, Mü.Ribeiro., Nascimento Porto, Wagnner.José., Regidor-Cerrillo, J., Ortega-Mora, L.M., da Fonseca Oliveira, André.Alice., Mota, R.A., First description of clonal lineage type II (genotype #1) of *Toxoplasma gondii* in abortion outbreak in goats, *Experimental Parasitology* (2018), doi: 10.1016/j.exppara.2018.03.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



Identification of Toxoplasma gondii

| 1  | First description of clonal lineage type II (genotype #1) of Toxoplasma gondii in                                                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | abortion outbreak in goats                                                                                                                 |
| 3  |                                                                                                                                            |
| 4  | Júnior Mário Baltazar de Oliveira <sup>a*</sup> , Jonatas Campos de Almeida <sup>a</sup> , Renata Pimentel                                 |
| 5  | Bandeira de Melo <sup>a</sup> , Luiz Daniel de Barros <sup>b</sup> , João Luis Garcia <sup>b</sup> , Müller Ribeiro Andrade <sup>a</sup> , |
| 6  | Wagnner José Nascimento Porto <sup>c</sup> , Javier Regidor-Cerrillo <sup>d</sup> , Luis Miguel Ortega-Mora <sup>d</sup> ,                 |
| 7  | Andréa Alice da Fonseca Oliveira <sup>a</sup> , Rinaldo Aparecido Mota <sup>a</sup>                                                        |
| 8  |                                                                                                                                            |
| 9  | <sup>a</sup> Department of Veterinary Medicine, Laboratory of Infectious-Contagious Diseases of                                            |
| 10 | Domestic Animals, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de                                                              |
| 11 | Medeiros, 52171-900, Recife, PE, Brazil                                                                                                    |
| 12 | <sup>b</sup> Department of Veterinary Medicine, Laboratory of Animal Protozoology,                                                         |
| 13 | Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380,                                                                |
| 14 | 86057-970, Londrina, PR, Brazil                                                                                                            |
| 15 | <sup>c</sup> Campus Arapiraca-Unidade Educacional Viçosa, Universidade Federal de                                                          |
| 16 | Alagoas, 57700-000, Viçosa, AL, Brazil                                                                                                     |
| 17 | <sup>d</sup> SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense                                                |
| 18 | University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.                                                                       |
| 19 |                                                                                                                                            |
| 20 |                                                                                                                                            |
| 21 | * Corresponding author: Tel: + 55 87 981012276                                                                                             |

22 E-mail address: juniormariobaltazar@gmail.com (JMB Oliveira)

## 23 Abstract

| 24 | The purpose of this study was to perform genotypic characterization and to                    |
|----|-----------------------------------------------------------------------------------------------|
| 25 | evaluate the virulence of Toxoplasma gondii obtained from aborted fetuses in an               |
| 26 | abortion outbreak in goats from northeastern Brazil. Brain samples from 32 fetuses were       |
| 27 | submitted to mouse bioassay for T. gondii isolation. Two isolates were obtained and           |
| 28 | subjected to genotypic characterization. Isolate virulence was evaluated using murine         |
| 29 | model in different doses (from $10^5$ to $10^1$ tachyzoites/mL). In genotyping, both isolates |
| 30 | were classified as clonal lineage type II (genotype #1 ToxoDB) and showed to be               |
| 31 | virulent for mice. This is the first description of genotype #1 in cases of goat abortion,    |
| 32 | showing the circulation of virulent T. gondii isolate producing reproductive disorders in     |
| 33 | pregnant goat.                                                                                |
| 34 | Keywords: Goat, reproductive disorders, toxoplasmosis, virulence, genotyping.                 |
| 35 |                                                                                               |
| 36 | 1. Introduction                                                                               |
| 37 | Toxoplasmosis is caused by the tissue cyst forming coccidian Toxoplasma gondii                |
| 38 | (Tenter et al., 2000). T. gondii infection is an important cause of reproductive disorders    |
| 39 | in goats (Caldeira et al., 2011; Unzaga et al., 2014) and it is considered a risk to public   |
| 40 | health (Dubey et al., 2011).                                                                  |
| 41 | Toxoplasma gondii presents three different clonal lineages classified as I, II and            |
| 42 | III (Howe and Sibley, 1995), which are common in Europe and North America,                    |
| 43 | however, atypical strains are the most frequently/commonly found in South America             |
| 44 | (Dubey et al., 2012). In Europe and United States, the genotypes more frequently in           |
| 45 | goats are type II and III (Dubey et al., 2011), although, in Brazil, predominate atypical     |
| 46 | genotypes (Ragozo et al., 2010). There is a lack of information concerning T. gondii          |

| 47 | genotypes involved in goat abortion cases, but there are reports of atypical strains in  |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------|--|--|--|--|--|
| 48 | Argentina (Unzaga et al., 2014) and type III in Brazil (Silva Filho et al., 2008).       |  |  |  |  |  |
| 49 | The purpose of this study was to perform genotypic characterization and to               |  |  |  |  |  |
| 50 | evaluate the virulence of Toxoplasma gondii isolates obtained from aborted fetuses in an |  |  |  |  |  |
| 51 | abortion outbreak in goats.                                                              |  |  |  |  |  |
| 52 |                                                                                          |  |  |  |  |  |
| 53 | 2. Materials and methods                                                                 |  |  |  |  |  |
| 54 |                                                                                          |  |  |  |  |  |
| 55 | 2.1. Ethics aspects                                                                      |  |  |  |  |  |
| 56 | This study was approved by the Ethics Committee in Animal Experimentation                |  |  |  |  |  |
| 57 | and Animal Welfare at Universidade Federal Rural de Pernambuco under the license         |  |  |  |  |  |
| 58 | number 122/2015and was conducted according to the ethical principles of animal           |  |  |  |  |  |
| 59 | experimentation, adopted by the Brazilian College of Animal Experimentation              |  |  |  |  |  |
| 60 | (CONCEA, 2013).                                                                          |  |  |  |  |  |
| 61 |                                                                                          |  |  |  |  |  |
| 62 | 2.2. Study design and sampling                                                           |  |  |  |  |  |
| 63 | During an abortion outbreak that occurred between September 2014 and October             |  |  |  |  |  |
| 64 | 2015 in a flock of goats, 32 fetuses at different stages of pregnancy were collected.    |  |  |  |  |  |
| 65 | Goats were raised in intensive system receiving water and mineral supplementation ad     |  |  |  |  |  |
| 66 | libitum. Feral and domestic cats had access to the facilities, food storage and water    |  |  |  |  |  |
| 67 | supply.                                                                                  |  |  |  |  |  |
| 68 | The fetuses were necropsied within 24 hours after abortion to collect the brain          |  |  |  |  |  |
| 69 | for bioassay. Blood samples from the aborted goats were collected for the detection of   |  |  |  |  |  |
| 70 | anti-Toxoplasma gondii antibodies using the enzyme-linked immunosorbent assay            |  |  |  |  |  |
| 71 | protocol (ELISA) adapted from Álvarez-García et al. (2003).                              |  |  |  |  |  |

72 2.3. Mouse bioassay

73 Brain samples from fetuses were macerated with PBS (pH 7,2), filtered on gauze 74 and centrifuged at 700g for 10 min. The supernatant was carefully discarded and the 75 pellet resuspended in PBS and centrifuged again. The supernatant was discarded and the 76 final product was resuspended in PBS containing antibiotic (1.000 IU of penicillin and 77 100 µg of streptomycin per mL) and inoculated intraperitoneally in two Swiss Webster 78 (SW) mice. Mice were observed daily and those who not died were euthanized 45 days 79 post-inoculation (d.p.i).

80 Tissue samples (brain, liver, lungs, heart and peritoneal lavage) of mice were 81 collected and stored for DNA extraction. Imprints of the brain and peritoneal lavage 82 were examined for *T. gondii* cysts and tachyzoites, respectively. Positive samples for 83 presence of T. gondii were inoculated in MARC-145 cells (Regidor-Cerrillo et al., 84 2008).

85

96

86 2.4. DNA extraction and PCR

87 Samples from aborted fetuses (brain) and mice (peritoneal lavage, brain and 88 pooled tissues containing liver, lungs and heart) were submitted to DNA extraction using the commercial kit Wizard Genomic DNA Purification System (Promega<sup>®</sup>, 89 90 Madison, WI, USA), according to the manufacturer's protocol. The concentration of 91 DNA for all samples was verified using spectrophotometry and adjusted to 100 ng/ $\mu$ L. 92 T. gondii DNA detection was performed by single tube nested PCR, using the external 93 primers TgNN1-TgNN2 and internal primers TgNP1-TgNP2, amplifying a fragment of 94 227 bp of the ITS1 region of the parasite (Hurtado et al., 2001) A suspension of *T. gondii* tachyzoites (RH strain, 10<sup>4</sup> tachyzoites/mL) and 95 ultrapure water were used as positive and negative controls, respectively. The amplified

- 97 PCR products were subjected to electrophoresis on 1.5% agarose gel stained with
  98 BlueGreen (LGC<sup>®</sup> Biotecnologia, Cotia, São Paulo, Brasil), and visualized under UV
  99 light.
- 100

101 2.5. Multilocus PCR-RFLP and phylogenetic analysis

102 Potencial *T. gondii* isolates obtained in the mice bioassay were characterized by 103 polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) 104 using 12 molecular markers (SAG1, 3'-SAG2, 5'-SAG2, Alt.SAG2, SAG3, BTUB, 105 GRA6, c22-8, c29-2, L358, PK1 and Apico) as previously described (Su et al., 2006), to 106 determine the genetic diversity of *T. gondii* circulating in the fetuses. The PCR products 107 were visualized by agarose gel electrophoresis at 2.5%, stained with Sybr Safe DNA Gel Stain (Invitrogen<sup>®</sup>, USA) and visualized using Safe Imager TM (Invitrogen<sup>®</sup>, USA). 108 109 The results were identified, compared and classified according to genotypes present in 110 ToxoDB (http://toxodb.org/toxo/). 111 For phylogenetic analysis, the electrophoresis banding patterns obtained by 112 PCR-RFLP were transformed into binary data and tabulated. The SplitsTree software 113 (Huson and Bryant, 2006) was used for phylogenetic reconstruction between the 114 genotypes obtained in the present study and others previously isolated in Brazil and in 115 the world. 116 2.6. Virulence analysis in mice 117 118 For virulence assessment, the isolate of *T. gondii* was inoculated into a

119 monolayer culture of African green monkey kidney cells MARC-145 and incubated at

120 37°C in a 5% CO<sub>2</sub>. The medium was changed after 24h. Blind passages of isolation

121 cultures were made at 4 to 7-day intervals until the parasite was observed

| 122 | microscopically in order to keep the total amount of cultured cells to a minimum. The       |
|-----|---------------------------------------------------------------------------------------------|
| 123 | amount of tachyzoites was determined by Trypan blue exclusion, followed by direct           |
| 124 | counting in a Neubauer chamber (Regidor-Cerrillo et al., 2008) and serial dilutions were    |
| 125 | performed starting from the concentration from $10^5$ to $10^1$ tachyzoites. Each dilution  |
| 126 | was inoculated intraperitoneally into six mice that were observed daily for four weeks.     |
| 127 | At the end of this period, mice that did not die were euthanized and samples of blood       |
| 128 | and brain were collected. The serum samples were submitted to the Modified                  |
| 129 | Agglutination Technique (MAT) for the detection of anti-T. gondii IgG antibodies            |
| 130 | (Desmonts and Remington, 1980), considering the cut-off 1:20. The brain was studied         |
| 131 | for <i>T. gondii</i> cysts. Virulence interpretation was performed according to Pena et al. |
| 132 | (2008).                                                                                     |
| 133 |                                                                                             |
| 134 | 2.7. Statistical analysis                                                                   |
| 135 | Incubation period and survival were estimated using the Kaplan-Meier curve                  |
| 136 | (Goel et al., 2010). The IBM SPSS Statistics 23.0 software was used to perform the          |
| 137 | statistical calculations and the level of significance adopted was 5.0%.                    |
| 138 |                                                                                             |
| 139 | 3. Results                                                                                  |

The two goats that aborted were positive for anti-*T. gondii* antibodies by ELISA
with IRPC values of 57.767 and 79.759, respectively. The first fetus was aborted at 124
days of pregnancy and showed congestive encephalic vessels, being obtained isolate
TgGtBrAL01. The another one was aborted at 101 days of pregnancy and was in the
process of autolysis, being obtained isolateTgGtBrAL02.
Tachyzoites were recovered from the peritoneal lavage of inoculated mice in

146 bioassay but no tissue cyst was observed in brain. *T. gondii* isolation was also confirmed

| 147 | by PCR in the brain samples of the two fetuses and in the peritoneal lavage of the mice                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 148 | inoculated with these samples. Two isolates (TgGtBrAL01 and TgGtBrAL02) were                                                               |
| 149 | obtained, representing an isolation rate of 6.2% (2/32). In genotyping, the both isolates                                                  |
| 150 | were classified as clonal lineage type II (genotype #1 ToxoDB). The results of                                                             |
| 151 | phylogenetic analysis are shown in Figure 1.                                                                                               |
| 152 | As the result of genotyping was the same for both isolates, one was chosen for                                                             |
| 153 | virulence analysis (TgGtBrAL01). The clinical signs observed are shown in Table 1.                                                         |
| 154 | Tachyzoites were recovered from peritoneal lavage of all mice that died, in addition to                                                    |
| 155 | the presence of activated macrophages. Mice that survived did not present antibodies                                                       |
| 156 | anti-T. gondii nor cysts in brain or tachyzoites in peritoneal lavage.                                                                     |
| 157 | The Incubation Period (IP) of isolate in the mice was 9.3 d.p.i. (I.C. $95\% = 6.8$ -                                                      |
| 158 | 11.9 d.p.i.). The mice inoculated with the highest concentrations of tachyzoites $(10^5)$                                                  |
| 159 | began to present clinical signs between the 4 <sup>th</sup> and 5 <sup>th</sup> d.p.i. Regarding the Survival                              |
| 160 | Period (SP) of inoculated mice, the mean SP was 11.3 d.p.i. (I.C. 95% = 9.1-13.6 d.p.i.)                                                   |
| 161 | Mouse deaths occurred according to the concentration of inoculated tachyzoites, with                                                       |
| 162 | the highest doses causing a faster death (Figure 2). The highest concentrations $(10^5 \text{ and }$                                       |
| 163 | $10^4$ ) caused the appearance of clinical signs in 100.0% (12/12) of inoculated mice                                                      |
| 164 | between the 4 <sup>th</sup> and 6 <sup>th</sup> d.p.i. and resulted in mouse deaths between 7 <sup>th</sup> and 9 <sup>th</sup> d.p.i. The |
| 165 | lowest concentration $(10^1)$ caused the appearance of clinical signs in 50.0% (3/6) of the                                                |
| 166 | mice on the 9 <sup>th</sup> d.p.i. and death on the 11 <sup>th</sup> d.p.i. This strain caused clinical signs and                          |
| 167 | death in 90.0% (27/30) of inoculated animals.                                                                                              |
| 168 |                                                                                                                                            |

- - - -

### 169 **4. Discussion**

170 *Toxoplasma gondii* infection is considered an important cause of reproductive
171 disorders in goats (Caldeira et al., 2011; Unzaga et al., 2014). The involvement of *T*.

*gondii* in abortion cases in that species has been described in different regions of the
world such as Spain, where the presence of the DNA of this protozoan was detected in
3.8% (1/26) of the aborted goat fetuses (Moreno et al., 2012). In Argentina, 24.0%
(6/25) of analyzed fetuses were positive for *T. gondii* by PCR (Unzaga et al., 2014). In
Brazil, a study reported that 100.0% (7/7) of fetuses from a goat herd with history of
reproductive disorders were positive for *T. gondii* by PCR (Caldeira et al., 2011).

This is the first report of *T. gondii* isolation in abortion outbreak in goats from Brazil. Until the present moment, for that species, the isolates obtained in Brazil were from tissue samples of chronically infected animals from commercial slaughterhouses with an isolation rate of 8.4% (12/143) (Ragozo et al., 2009). It is known that the dose of the parasite may influence the isolation rate, based on this, in most cases, there is no way to control the parasitic load in tissue samples intended for isolation (Pena et al., 2008). Thus, small concentrations of the protozoan in inoculated tissues may have

#### 185 negatively influenced on the isolation result.

Regarding the genotypic characterization of *T. gondii* strains, there is a lack of studies related to the detection of the genotypes involved in abortion cases in naturally infected goats worldwide. In South America, there are reports of *T. gondii* genotypes classified as atypical obtained from aborted goat fetuses in Argentina (Unzaga et al., 2014). In Brazil, the genetic diversity of *T. gondii* isolates in small ruminants is high (Ragozo et al., 2010), whereas the presence of classic clonal lineages is considered rare, especially type II (Pena et al., 2008).

193 This is the first description of clonal lineage type II (genotype #1 ToxoDB) in 194 goat abortion cases. This clonal lineage was previously identified in sheep abortion 195 cases (Jungersen et al., 2002). This genotype was first described in goats slaughtered for 196 human consumption in the United States (Dubey et al., 2011). In Brazil, there are

197 records of this genotype in felines (Pena et al., 2008), and swine (Andrade et al., 2013).

198 This clonal lineage is frequently reported in Africa, Europe and North America,

199 however, it is considered rare in South America (Dubey et al., 2012).

200 The isolate obtained was considered intermediate virulent, corroborating with 201 those of other studies where genotype #1 was also virulent for mice (Pena et al., 2008). All mice inoculated with TgGtBrAL01 tachyzoites died except at the concentration of 202  $10^1$  where the mortality rate was 50.0%. The surviving mice did not present tissue cysts 203 204 and anti-T. gondii antibodies, indicating that this dose was not able to induce infection 205 in all mice as previously described in other studies (Jungersen et al., 2002). Regarding 206 to the three mice negative, it is important to consider the possibility of T. gondii cysts in 207 other tissues that were not analyzed by this study. Furthermore, the low quantity of tachyzoites inoculated  $(10^1)$  may have stimulated a slow immune response with 208 209 antibody titers below the cut-off to be classified as positive by the technique. Howe et 210 al. (1996) described that isolates of clonal type II are virulent to mice from a dose of  $10^2$ 211 tachyzoites. Due to this pathogenicity difference, is interesting to perform other 212 virulence assay considering virulence markers such as the genotyping of ROP 5 and 213 ROP18 genes (Schwab et al., 2014).

Mice inoculated with *T. gondii* isolated from goats destinated for human consumption died within three weeks p.i and those which survived did not present specific anti-*T.gondii* antibodies (Dubey et al., 2011), corroborating with the data obtained by our study. Nevertheless, according to the same authors, mice inoculated by oral route with oocysts of clonal lineage type II isolate (TgGoatUS2) died between 7 and 13 d.p.i. Those inoculated with the lowest dilutions (1-100 oocysts) survived and cysts were identified in the brains of mice.

| 221 | The virulence of <i>T. gondii</i> may be influenced by different factors, such as the      |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------|--|--|--|--|--|
| 222 | lineage of mice used in the bioassay, parasite life stage, inoculation route and number of |  |  |  |  |  |
| 223 | passages (Dubey et al., 2011; Ragozo et al., 2009). These factors may probably be          |  |  |  |  |  |
| 224 | related to the difference between the virulence results previously mentioned.              |  |  |  |  |  |
| 225 |                                                                                            |  |  |  |  |  |
| 226 | 5. Conclusion                                                                              |  |  |  |  |  |
| 227 | This is the first isolation of clonal lineage type II (genotype #1 ToxoDB) in              |  |  |  |  |  |
| 228 | abortion goat cases. The obtained isolate showed intermediate virulence in the murine      |  |  |  |  |  |
| 229 | model, however, further studies are necessary to better understand the molecular           |  |  |  |  |  |
| 230 | epidemiology and the abortion pathogenesis of this isolate.                                |  |  |  |  |  |
| 231 |                                                                                            |  |  |  |  |  |
| 232 | Competing interests                                                                        |  |  |  |  |  |
| 233 | None.                                                                                      |  |  |  |  |  |
| 234 |                                                                                            |  |  |  |  |  |
| 235 | Acknowledgments                                                                            |  |  |  |  |  |
| 236 | The CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate                 |  |  |  |  |  |
| 237 | Education) for granting the scholarship, doctorate level.                                  |  |  |  |  |  |
| 238 |                                                                                            |  |  |  |  |  |
| 239 | Reference                                                                                  |  |  |  |  |  |
| 240 | Álvaterez-García, G., Collantes-Fernández, E., Costa, E., Rebordosa, X., Ortega-Mora,      |  |  |  |  |  |
| 241 | L.M., 2003. Influence of age and purpose for testing on the cut-off selection of           |  |  |  |  |  |
| 242 | serological methods in bovine neosporosis. Vet. Res. 34, 341-352.                          |  |  |  |  |  |
| 243 | doi:10.1051/vetres                                                                         |  |  |  |  |  |
| 244 | Andrade, M.M.C., Pinheiro, B. V, Cunha, M.M., Carneiro, A.C.A. V, Neto, V.F.A.,            |  |  |  |  |  |
| 245 | Vitor, R.W.A., 2013. New gentotypes of Toxoplasma gondii obtained from farm                |  |  |  |  |  |

- animals in Northeast Brazil. Res. Vet. Sci. 94, 587–589.
- 247 Caldeira, F.H.B., Ubiali, D.G., de Godoy, I., Dutra, V., de Aguiar, D.M., Melo, A.L.T.,
- Riet-Correa, F., Colodel, E.M., Pescador, C.A., 2011. Outbreak of caprine abortion
  by *Toxoplasma gondii* in Midwest Brazil. Pesqui. Vet. Bras. 31, 933–937.
- 250 doi:10.1590/S0100-736X2011001100001
- 251 CONCEA, 2013. Resolução Normativa no 13, de 20 de setembro de 2013. Diretrizes da
- 252 Prática de Eutanásia do Conselho Nacional de Controle de Experimentação Animal
  253 [WWW Document]. URL http://www.mct.gov.br/upd\_blob/0228/228451.pdf
  254 (accessed 2.1.16).
- Desmonts, G., Remington, J.S., 1980. Direct Agglutination Test for Diagnosis of
  Toxoplasma Infection: Method for Increasing Sensitivity and Specificity. J. Clin.
  Microbiol. 11, 562–568.
- Dubey, J.P., Lago, E.G., Gennari, S.M., Su, C., Jones, J.L., 2012. Toxoplasmosis in
  humans and animals in Brazil: high prevalence, high burden of disease and
  epidemiology. Parasitology 139, 1375–1424. doi:10.1017/S0031182012000765
- 261 Dubey, J.P., Rajendran, C., Ferreira, L.R., Martins, J., Kwok, O.C.H., Hill, D.E.,
- 262 Villena, I., Zhou, H., Su, C., Jones, J.L., 2011. High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for 263 264 human consumption in the USA. Int. Parasitol. 827-833. J. 41. 265 doi:10.1016/j.ijpara.2011.03.006
- Goel, M.K., Khanna, P., Kishore, J., 2010. Understanding survival analysis: KaplanMeier estimate. Int. J. Ayurveda Res. 1, 274–278. doi:10.4103/0974-7788.76794
- 268 Howe, D.K., Sibley, L.D., 1995. Toxoplasma gondii Comprises Three Clonal Lineages :
- 269 Correlation of Parasite Genotype with Human Disease Function p30 Surface270 Antigen p22 Surface Antigen Rhoptry protein Unknown cDNA Unknown

- 271 Unknown cDNA. J. Infect. Dis. 172, 1561–1566.
- Howe, D.K., Summers, B.C., Sibley, L.D., 1996. Acute virulence in mice is associated with markers on chromosome VIII in *Toxoplasma gondii*. Infect. Immun. 64,
- 5193–5198.
- Hurtado, A., Aduriz, G., Moreno, B., Barandika, J., García-Pérez, A.L., 2001. Single
  tube nested PCR for the detection of *Toxoplasma gondii* in fetal tissues from
  naturally aborted ewes. Vet. Parasitol. 102, 17–27. doi:10.1016/S03044017(01)00526-X
- Huson, D.H., Bryant, D., 2006. Application of phylogenetic networks in evolutionary
  studies. Mol. Biol. Evol. 23, 254–267. doi:10.1093/molbev/msj030
- Jungersen, G., Jensen, L., Rask, M.R., Lind, P., 2002. Non-lethal infection parameters in
  mice separate sheep Type II *Toxoplasma gondii* isolates by virulence. Comp.
  Immunol. Microbiol. Infect. Dis. 25, 187–195. doi:10.1016/S0147-9571(01)00039-
- 284 X
- Moreno, B., Collantes-Fernández, E., Villa, a., Navarro, a., Regidor-Cerrillo, J.,
  Ortega-Mora, L.M., 2012. Occurrence of *Neospora caninum* and *Toxoplasma gondii* infections in ovine and caprine abortions. Vet. Parasitol. 187, 312–318.
  doi:10.1016/j.vetpar.2011.12.034
- 289
- Pena, H.F.J., Gennari, S.M., Dubey, J.P., Su, C., 2008. Population structure and mousevirulence of *Toxoplasma gondii* in Brazil. Int. J. Parasitol. 38, 561–569.
  doi:10.1016/j.ijpara.2007.09.004
- Ragozo, A.M.A., Yai, L.E.O., Oliveira, L.N., Dias, R.A., Gonçalves, H.C., Azevedo,
  S.S., Dubey, P., Gennari, S.M., 2009. Isolation of *Toxoplasma* gondii from Goats
  from Brazil. J. or Parasitol. 95, 323–326.

| 296 | Ragozo, A.M. a, Pena, H.F.J., Yai, L.E.O., Su, C., Gennari, S.M., 2010. Genetic         |
|-----|-----------------------------------------------------------------------------------------|
| 297 | diversity among Toxoplasma gondii isolates of small ruminants from Brazil: Novel        |
| 298 | genotypes revealed. Vet. Parasitol. 170, 307-312. doi:10.1016/j.vetpar.2010.02.024      |
| 299 | Regidor-Cerrillo, J., Gómez-Bautista, M., Pereira-Bueno, J., Aduriz, G., Navarro-       |
| 300 | Lozano, V., Risco-Castillo, V., Férnandez-García, a, Pedraza-Díaz, S., Ortega-          |
| 301 | Mora, L.M., 2008. Isolation and genetic characterization of Neospora caninum            |
| 302 | from asymptomatic calves in Spain. Parasitology 135, 1651–1659.                         |
| 303 | doi:10.1017/S003118200800509X                                                           |
| 304 | Schwab, C., Berry, D., Rauch, I., Rennisch, I., Ramesmayer, J., Hainzl, E., Heider, S., |
| 305 | Decker, T., Kenner, L., Müller, M., Strobl, B., Wagner, M., Schleper, C., Loy, A.,      |

- 306 Urich, T., 2014. Longitudinal study of murine microbiota activity and interactions
  307 with the host during acute inflammation and recovery. ISME J. 8, 1101–1114.
  308 doi:10.1038/ismej.2013.223
- 309 Silva Filho, M.F., Erzinger, É., Cunha, I.A.L., Bugni, F.M., Hamada, F.N., Marana,
  310 E.R.M., Freire, R.L., Garcia, J.L., Navarro, I.T., 2008. *Toxoplasma gondii*:
  311 abortion outbreak in a goatherd from Southern Brazil. Semin. Ciências Agrárias
  312 29, 887–894.
- Su, C., Zhang, X., Dubey, J.P., 2006. Genotyping of *Toxoplasma gondii* by multilocus
  PCR-RFLP markers: A high resolution and simple method for identification of
  parasites. Int. J. Parasitol. 36, 841–848. doi:10.1016/j.ijpara.2006.03.003
- Tenter, A.M., Heckeroth, A.R., Weiss, L.M., 2000. *Toxoplasma gondii*: From animals to
  humans. Int. J. Parasitol. 30, 1217–1258. doi:10.1016/S0020-7519(00)00124-7
- 318 Unzaga, J.M., Moré, G., Bacigalupe, D., Rambeaud, M., Pardini, L., Dellarupe, a., De
- 319 Felice, L., Gos, M.L., Venturini, M.C., 2014. Toxoplasma gondii and Neospora
- 320 *caninum* infections in goat abortions from Argentina. Parasitol. Int. 63, 865–867.

## 321 doi:10.1016/j.parint.2014.07.009

322

|     | ACCEPTED MANUSCRIPT                                                                        |
|-----|--------------------------------------------------------------------------------------------|
| 323 |                                                                                            |
| 324 | Figure 1. Phylogenetic analysis of the Toxoplasma gondii isolates obtained (circle),       |
| 325 | with the following strains used as references: GT1, PTG, CTG, MAS,                         |
| 326 | TgCatBr5, TgCatBr64, Cougar, BrI, BrII, BrIII, BrIV.                                       |
| 327 |                                                                                            |
| 328 | Figure 2. Survival curve to determine the virulence of <i>Toxoplasma gondii</i> TgGtBrAL01 |
| 329 | isolate in murine model (Swiss Webster). A – Survival curve for mice                       |
| 330 | challenged with Toxoplasma gondii TgGtBrAL01 isolate. B – Survival curve                   |
| 331 | for mice challenged with different doses of TgGtBrAL01 isolate.                            |

with different doses of TgGtBrAL01 isolate.

| Isolate    |   | Bristly | Abdominal | Dyspnea | Diarrhea | Ascites | Conjunctivitis |
|------------|---|---------|-----------|---------|----------|---------|----------------|
|            |   | hair    | pain      |         |          |         |                |
|            | % | 100,0%  | 63,0%     | 44,4%   | 25,9%    | 0,0%    | 3,7%           |
| TgGtBrAL01 | n | 27      | 17        | 12      | 7        | 0       | 1              |
|            | N | 27      | 27        | 27      | 27       | 27      | 27             |

- N Total number of mice that showed clinical signs; n number of mice that showed
- the specific alteration.
- **Table 1.** Clinical signs observed in inoculated mice (Swiss Webster) with  $10^5$  to  $10^1$
- 336 tachyzoites of *Toxoplasma gondii* TgGtBrAL01 isolate.





### Highlights

- > Occurrence of *Toxoplasma gondii* in an outbreak of goat abortion
- First description of the clonal type II clone in aborted goat fetuses
- > Evaluation of the virulence of the *T. gondii* strain obtained in the murine model