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Abstract

In this paper, we introduce the notion of tube with arbitrary cross sections around
a curve for which we calculate the volume and give a generalization for the second
theorem of Pappus. The first Theorem of Pappus is obtained for sphere tubes in
arbitrary dimension.
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subjclass 53A07, 53C42

1 Introduction

The calculation of the volume of disk tubes in Rn+1 and in the euclidean sphere Sn

appears in [8]. Actually, the main goal of this paper is to work within the sphere. In [5],
the author generalizes the Pappus theorems for genuine tubes around an arbitrary curve
in R3. In the case of the second Pappus theorem, his proof makes use of the divergence
theorem. Here, we will establish such a theorem for genuine tubes in Rn+1 by using a
different strategy, namely, the formula for change variable in multiple integrals.

The first theorem of Pappus concerns the calculation of surface area, while the
second concerns the calculation of volume of solids of revolution. They are as follows.

Theorem A (The First Theorem of Pappus). If a plane curve CP of lengthM is rotated
about an axis that does not meet CP , then S, the area of the surface generated, is given
by

S =ML

where L is the length of the curve described by the centroid of CP during the rotation.
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Theorem B (The Second Theorem of Pappus). Let D be a region in the plane and
let L be a line in the plane of D. If L does not meet D, then the volume of the solid
generated when D is rotated around L is given by

V = AL,

where A is the area of D and L is the perimeter of the circle described by the centroid
of D.

Probably, the torus of revolution T (a, b) ⊂ R3, generate by revolving the circle

(x− b)2 + z2 = a2, y = 0,

around the z-axis, is the best known example of tube around a curve f in R3. This curve,
which is called the axis of T (a, b), is given by f(t) = (b cos t, b sin t, 0), 0 ≤ t ≤ 2π, whose
trace is the circle x2 + y2 = b2 in the xy-plane. T (a, b) is a regular surface, whenever
0 < a < b and

X(v, t) = ((b+ a cos v) cos t, (b+ a cos v) sin t, a sin v),

for (v, t) ranging over [0, 2π] × [0, 2π], is onto T (a, b). Of course the restriction of X
to the open rectangle (0, 2π) × (0, 2π) is a parametrization of T (a, b). A good way of
rewriting this map consists in replacing (a cos v, a sin v) by (x1, x2) to obtain a new map

G(x1, x2, t) = ((b+ x1) cos t, (x1 + b) sin t, x2),⊂ R3,

(x1, x2, t) ∈ S1(a) × [0, 2π], where S1(a) is the circle x21 + x22 = a2 of the x1x2-plane of
the tridimensional space R3 with euclidean coordinates (x1, x2, t). This map sends the
right circular cylinder over S1 having height 2π onto T (a, b), transforming each copy
of S1 in the cylinder onto a copy of the generator circle of T (a, b). By composing G
with h(v, t) = (a cos v, a sin v, t) we can recover X. At this moment, it is convenient

to observe that G̃, the extension of G to the solid cylinder B[2][a] × [0, 2π], fills the
solid enclosed by T (a, b), where B[2][a] denotes the compact disk of radius a of the

x1x2-plane. G̃ becomes, for (x1, x2, t) ∈ B[2][a]× [0, 2π] ⊂ R3,

G̃(x1, x2, t) = ((b+ x1) cos t, (x1 + b) sin t, x2), (1.1)

which is onto the solid torus T (a, b). The next picture shows X, G and the torus T (a, b)
together with the Frenet frame {T,N,B} of its axis f(t) = (b cos t, b sin t, 0). It is not
hard to see that

T(t) = (− sin t, cos t, 0),

N(t) = (− cos t,− sin t, 0),

B(t) = (0, 0, 1).
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Furthermore, κ = 1/b and τ = 0 are the curvature and torsion of f . In order to

generalize the ideas in the exposition above, we verify easily that G (G̃) coincides with

f(t)− x1N(t) + x2B(t).

x1

x2

x
S1 × [0, 2π]

G2π
yt

v

X[0, 2π]× [0, 2π]
z

t

Figure 1. Torus of revolution

The minus signal was included because {−N,B} has the same orientation as {e2, e3}
in the revolving x1x2-plane. However, we can choose with no additional difficulties

f(t) + x1N(t) + x2B(t) = ((b− x1) cos t, (b− x1) sin t, x2)

to generate the same torus. From this model, we will construct tubes of either spheres
or disks or any other nice region around a n-regular curve f in Rn+1. Going back
to (1.1) and taking the rule of G̃, we define the following map, defined in Ω, by

H(x1, x2, t) = ((b+ x1) cos t, (x1 + b) sin t, x2),

where Ω is the open set B[2](ã) × (0, 2π) and B[2](ã) is the open disk of radius ã, for
some ã such that b > ã > a. It is not hard to see that H is injective and the absolute
values of the its jacobian determinant is

| det JH| =
∣∣∣∣det(∂H∂x1 , ∂H∂x2 , ∂H∂t

)∣∣∣∣
=

∥∥∥∥∂H∂x1 ∧ ∂H

∂x2
∧ ∂H

∂t

∥∥∥∥ = |b+ x1| = b+ x1 > 0,
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since −b < −ã < x1 < ã < b. Thus, for a sufficiently small ϵ > 0 we can calculate
the volume of T ϵ ⊂ T (a, b), the image under H of the compact set B[2][a]× [ϵ, 2π − ϵ],
which, by using the change of variable in multiple integrals, is

vol T ϵ =

∫∫∫
T ϵ

dx dy dz =

∫ 2π−ϵ

ϵ

(∫∫
B[2][a]

(b+ x1)dx1dx2

)
dt

= b

∫ 2π−ϵ

ϵ

(∫∫
B[2][a]

dx1dx2

)
dt

= 2πa2b(π − ϵ),

where we have used
∫∫

B[2][a]
x1dx1dx2 = 0, fact that is intimately connected to the

barycenter1 of the disk D[a], namely its center (0, 0). Hence

volT (a, b) = lim
ϵ→0

volT ϵ = 2π2a2b,

which is a well known result and that can be obtained from the second theorem of
Pappus applied to the torus: the volume of T (a, b) equals the area of B[2][a] times the
length of the curve described by the center of the revolving disk.

x x

yy

Tϵ
T ϵ

zz

Figure 2. Calculating the volume and the area of Torus

By the same reasoning, we can find the area of the T (a, b), by working with the
restriction of X to the rectangle Rϵ = [ϵ, 2π − ϵ] × [ϵ, 2π − ϵ] whose image is Tϵ, as in
the picture above (see [3]-2.5-Example 5). The calculations are as follows.

1The barycenter (see also (3.4), page 215) of a compact region K ⊂ R2

with area > 0 is the point BK = 1
areaK (

∫∫
K xdx dy,

∫∫
K ydx dy).
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area Tϵ =

∫∫
Rϵ

∥∥∥∥∂X∂t ∧ ∂X

∂v

∥∥∥∥ dt dv =

∫∫
Rϵ

√∥∥∥∥∂X∂t
∥∥∥∥2 ∥∥∥∥∂X∂v

∥∥∥∥2 − (∂X∂v · ∂X
∂v

)2

dt dv

=

∫ 2π−ϵ

ϵ

(∫ 2π−ϵ

ϵ

(b+ a cos v) dv

)
dt

= 4a2ϵ sin ϵ− 4πa2 sin ϵ+ 4abϵ2 − 8πabϵ+ 4π2ab,

whose limit, as ϵ tends to zero, is 4π2ab, which is the area of T (a, b). Now, we have the
length of S1(a) times the length of curve described by the center of the revolving circle,
which comes from the first theorem of Pappus. The cited theorems of Pappus concern
either surfaces or solids of revolution generated by either a simple plane curve or the
region enclosed by it. Next, we will deal with these theorems in a more general sense
in any dimension. A generalization of them, in the tridimensional case, appears in [5].

2 Constructing tubes

Given an interval J , let ΩJ be the set

ΩJ(St) = ∪t∈JSt ⊂ Rn+1,

where
St = {(x1, x2, . . . , xn, t); (x1, x2, . . . , xn) ∈ S̃t ⊂ Rn}

and S̃t, the projection of St in Rn, has positive volume. So, ΩJ is the solid whose
intersection with the hyperplane xn+1 = t is St, for each t ∈ J . When all projections
coincide with a certain region S, ΩJ(S) is a solid cylinder with cross section S, case

in which we write St = (S, t) and vol S̃t = volS > 0, of course measured in Rn. Now,
given I = [a, b] ⊂ J and F : ΩJ(St) −→ R continuous, we suppose that the integral∫

ΩI(St)

F (X, t) dx1dx2 . . . dt =

∫
ΩI(St)

F (x1, x2, . . . , xn, t) dx1dx2 . . . dt

always exists. Thus, by using the Fubini theorem, we get∫
ΩI(St)

F (X, t) dx1dx2 . . . dxn dt =

∫ b

a

(∫
S̃t

F (X, t) dx1dx2 . . . dxn

)
dt.
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In particular, vol ΩJ(St) =
∫ b

a
vol S̃t dt.

x1x1
P̃ S̃t = S

S̃t

xn xn

a a
e1 e1P (t)

St enSten
t t

en+1en+1

b b
ΩI(St) ΩI(S) = S × [a, b]t t

Figure 3. Solids with cross section St

Let f : J −→ Rn+1 be a regular curve with Frenet referential

{V1(t), V2(t), . . . , Vn+1(t)}

and ΩJ(St) as above. We construct a tube around f , which we call the tube generated
by ΩJ(St) as follows. Choose in each slice Rn × {t} one point, say

P = P (t) = (p1(t), p2(t), . . . , pn(t), t)

(in general, we choose P (t) in St) and put St in the hyperplane orthogonal to the trace
of f at f(t), making the point P (t) stay on f(t) and each ej of the canonical basis of Rn

on Vj+1. This process ends with what we call the tube around f generated by ΩJ(St)
and centered at P (t), which will be indicated by ΓP (f,ΩJ(St)) or simply Γ with little
danger of confusion. Intuitively, everything happens as if a region S is moving along a
curve by expanding or shrinking and always stuck to the curve by a point P . We also
say that the curve f is the axis of the tube.

ΓP (f,ΩJ(St)) can be obtained as image of ΩJ(St) under the mapG : Rn × J −→ Rn+1

given by

G(X, t) = f(t) +
n∑

j=1

(xj − pj(t))Vj+1(t), (2.1)

where (X, t) = (x1, x2, . . . , xn, t) ∈ Rn+1. Of course that this map changes with a change

in the choice P̃ (t) = (p1(t) p2(t) . . . pn(t)). Geometrically, G sends each cross-sections
St onto a copy of it, also called cross section of the tube, into the hyperplane passing
through f(t) and parallel to the subspace generated by V2, V3, . . . , Vn+1, gluing P (t)
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and f(t) and laying ej, the j-th element of the canonical basis, on Vj+1, for j running
from 1 to n, as we see in the Figure 4 below.

x1

Vn+1P̃S̃t xn
f(a)

V2
V1

a
V2

Vn+1e1 P (t) f(t)
St en

t V1

en+1 G V2
f(b)

Vn+1
b V1ΩI(St) ΓP (f,ΩI(St))
t

Figure 4. Tube around the curve f

Remark 2.1. Actually, in (2.1), we could use F̃t(Vj+1(t)) instead Vj+1(t), where F̃t is a
differentiable family of linear isometries of Wt = span{Vj(t), 2 ≤ j ≤ n + 1} induced
by a differentiable family of linear isometry of Rn, Ft, producing so a twisted tube. If
Lt : Rn −→ Wt is the linear isometry such that Lt(ej) = Vj+1(t), then F̃t is constructed
as in the commutative diagram below. Note that when each cross section St of ΩJ(St)
is a disk centered at the (0, 0, ..., t), then the disk tube constructed from a family of
isometries Ft must coincide with that obtained from G in (2.1), which is constructed
by using the identity map. In fact, disks centered at origin are invariant under linear
isometries.

Rn Wt

Rn Wt

Lt

F̃t
Ft

L−1
t

Of course a tube Γ = ΓP (f,Ω(St)) may have self-intersections, which depend on the
curvatures of f and the size of the St. If ΓP has no such a self-intersection, that is, if G
is injective, Γ is called a genuine tube. In the picture above, we have a genuine tube. In
the cases where the cross section of ΩJ(St) are disks, we say that Γ is a disk tube around
f . Below, in the Figure 5, we see two cases of self-intersections in disk tubes around the
same curve. In both cases, a reduction in the sizes of the cross sections would produce
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genuine disk tubes. The next theorem guarantees the existence of genuine disk tubes.

Figure 5. Two nongenuine tubes

Theorem 2.2. Let f : J −→ Rn+1 be a n-regular curve with speed ν, Frenet apparatus

A = {κ1, . . . , κn−1, V1, . . . , Vn},

and consider a compact interval I = [a, b] ⊂ J . If f is injective, then there exists r > 0
such that the map G in (2.1), with pj(t) = 0, 1 ≤ j ≤ n, carries B[n][r] × I onto the
compact genuine disk tube Γ = G(B[n][r] × I), where B[n][r] is the compact disk of
radius r in Rn.

Proof. We start by calculating the absolute value of the jacobian determinant of G,
that is given by

| det JG| =
∣∣∣∣det( ∂G∂x1 ∂G

∂x2
· · · ∂G

∂xn

∂G

∂t

)∣∣∣∣ = ∥∥∥∥ ∂G∂x1 ∧ ∂G

∂x2
∧ · · · ∧ ∂G

∂xn
∧ ∂G

∂t

∥∥∥∥ .
From G(x1, x2, . . . , xn, t) = f(t) +

∑n
j=1 xj Vj+1, we get that

∂G
∂xj

= Vj+1, for 1 ≤ j ≤ n,

and that

∂G

∂t
= f ′ +

n∑
j=1

xj V
′
j+1

= ν

(
V1 +

n−1∑
j=1

xj(−κj Vj + κj+1 Vj+2)− xn κn Vn

)

= ν(1− x1 κ1)V1 + ν
n+1∑
j=2

zj Vj,
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for some coefficients zj, which depend on xk, 1 ≤ k ≤ n, and κm, for 2 ≤ m ≤ n.
Hence,∥∥∥∥ ∂G∂x1 ∧ ∂G

∂x2
∧ · · · ∧ ∂G

∂xn
∧ ∂G

∂t

∥∥∥∥ = ν|1− x1 κ1| ∥V2 ∧ · · · ∧ Vn+1 ∧ V1∥ = ν|1− x1 κ1|

and, thus, the absolute value of the jacobian determinant of G equals ν|1 − x1 κ1|. In
particular, fixed t ∈ J , and letting P = (0, 0, . . . , 0, t), we obtain that | det JG(P )| =
ν > 0. Since, f is injective, it follows that G is injective on the compact set

K = {(0, 0, . . . , 0)} × [a, b].

a

K f(a)

ΓU

G(X, t)
b

V

f(b)
B[r]× [a, b]

Figure 6. Illustration for the Theorem 2.2

Hence, by using the generalized version of the inverse function theorem, we get an open
set U ⊃ K and an open set V ⊃ G(K) = f([a, b]) such that the restriction G : U −→ V
is a diffeomorphism. Since U is an open set, there is a family of small open cylinders
B[n](ϵλ)×(aλ, bλ) whose union coversK. From this family, we get a finite number of such
cylinders, say B[n](ϵj) × (aj, bj), 1 ≤ j ≤ m, such that K ⊂ ∪m

j=1

(
B[n](ϵj)× (aj, bj)

)
.

Now, Γ = G(B[n][r]× [a, b]), r < min{ϵj}, becomes a genuine compact disk tube, as we
see in the Figure 6.

Remark 2.3. Many times, we have curves f : J −→ Rn such that its trace is contained
in an affine subspace, say, W = X0 + S, where X0 is a point and S is a m-dimensional
subspace of Rn, m < n (think of f as a plane curve in R3). In many of these cases,
when f is (m−1)-regular, we may construct a partial Frenet apparatus for f , obtaining

A = {κ1 > 0, . . . , κm−1 > 0, κm = 0, V1, . . . , Vm, Vm+1},

which satisfies the Frenet equations and, moreover, for each t ∈ J , the subspace gener-
ated by {V1, V2, . . . , Vm} equals S and Vm+1 ∈ S⊥ is constant. Then, we consider an

ReviSeM, Ano 2022, No. 196–227 204



Seixas, J.A.P. & Barbosa, I.I.

orthonormal basis for the orthogonal complement of S, say, {Vm+1, Vm+2, . . . , Vn} and
define κm+1, . . . , κn−1 to be all zero. So, we have a full Frenet apparatus:

A = {κ1, . . . , κn−1, V1, . . . , Vn},

where {Vm+1, Vm+2, . . . , Vn} is constant and κj = 0, m ≤ j ≤ n − 1. Moreover, the
Frenet equations remain true for this extended apparatus.

The apparatus of the straight line f(t) = X0 + t V1, ∥V1∥ = 1, is now defined and is
given by

A = {κ1, . . . , κn−1, V1, . . . , Vn},

where the curvatures are zero and {V1, . . . , Vn} is an orthonormal basis of Rn. Also, we
may consider the regular curves in Rm, m < n, as curves in Rn, by filling with zeros
after the m-th coordinate: f(t) = (f1(t) f2(t) . . . fm(t), 0, 0, . . . , 0), case in which the
Frenet apparatus becomes

A = {κ1, . . . , κn−1, V1, . . . , Vn},

where {Vm+1, Vm+2, . . . , Vn} is part of the canonical basis of Rn and κj = 0, m ≤ j ≤
n− 1. Of course Vj, 1 ≤ j ≤ m, are those vector fields of the original curve with zeros
on the last n −m coordinates. For example, the curve in R4, f(t) = (cos t, sin t, 0, 0),
obtained from f(t) = (cos t, sin t), has its Frenet apparatus with curvatures κ1 = 1,
κ2 = 0, κ3 = 0 and the Frenet frame

F = {V1, V2, V3, V4},

where V1 = (− sin t, cos t, 0, 0), V2 = (− cos t,− sin t, 0, 0), V3 = (0, 0, 1, 0) e V4 =
(0, 0, 0, 1). Finally, note that Theorem 2.2 may be applied to any regular curve that
has a well defined Frenet apparatus.

At the moment that we have a new theorem, it is always good to seek an example
to highlight its statement. We do not find in the literature any non-trivial example
of a genuine tube, even of disks, other than the torus of revolution. For this reason,
we will try to expose such an example including a significant level of details. Much
of the calculations will be omitted, but they will be indicated and left as exercises for
the reader. We will construct a maximal genuine disk tube around the circular helix
f(t) = (cos t, sin t, t), t ∈ R. The example will be decomposed in steps, some of them
including some interesting lemmas of real analysis. Actually, we have here a surprisingly
laborious and elegant example.

Example 2.4. Let f : R −→ R3, f(t) = (cos t, sin t, t). The apparatus of f is
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κ = κ1 =
1
2
;[1] τ = κ2 =

1
2
;[2]

T = V1 =
(
− sin(t)√

2
, cos(t)√

2
, 1√

2

)
;[3]

N = V2 = (− cos(t),− sin(t), 0);[4]

B = V3 =
(

sin(t)√
2
,− cos(t)√

2
, 1√

2

)
.[5]

We will study the disk tube of radius 2 around f and centered at P = (0, 0, t), which
will be indicated by Γ1 = G∗(B[2][2] × R), where B[2][2] ⊂ R2 is the compact disk of
radius 2 centered at origin and G∗ from R3 into R3 is

G∗(X, t) = f(t)− xN(t) + yB(t)

=
(
(x+ 1) cos(t) + y sin(t)√

2
, (x+ 1) sin(t)− y cos(t)√

2
, t+ y√

2

)
,

where X = (x, y). Looking at the map G in (2.1), we see that in the rule above we
consider −N(t) instead N(t) (compare to the Remark 2.1). The reason is that this
simplifies the handling of certain angles, mainly TI and T (see the next picture). The
disk tubes obtained from G∗ and G coincide, since G∗(−x, y, t) equals

G(x, y, t) = f(t) + xN(t) + yB(t),

which is the map in (2.1). Also, it is easy to see that the injectivity of one of them
implies the injectivity of the other one. In what follows, we will conclude that G∗ (and
thus G) is injective in B[2][2]×R and that this fails in B[2](R)×R for any open disk of
radius R > 2, B[2](R). So, suppose that G∗(A, t1) = G∗(B, t2), where A = (x1, y1) and
B = (x2, y2) lie in B[2][2] and, without loss of generality, t1 ≤ t2. We are going to our
first claim.

Claim 1:

t2 − t1 =
y1√
2
− y2√

2
;[1]

(x1 + 1)2 +
y21
2
= (x2 + 1)2 +

y22
2
.[2]

In fact, G∗(x1, y1, t1) = G∗(x2, y2, t2) is the same as(x1 + 1) cos (t1) +
y1 sin(t1)√

2

(x1 + 1) sin (t1)− y1 cos(t1)√
2

t1 +
y1√
2

 =

(x2 + 1) cos (t2) +
y2 sin(t2)√

2

(x2 + 1) sin (t2)− y2 cos(t2)√
2

t2 +
y2√
2


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whence we get easily [1]. By summing the squares of the two first entries in the matrices
above, we get [2], which shows that A and B lie in the ellipse Er

Er = {(x, y) ∈ R2; H(x, y) = (x+ 1)2 +
y2

2
= r2},

where r2 equals the identical real numbers in [2]. The ellipse Er plays a crucial role
in the discussion that follows. Since 0 = H(−1, 0) ≤ H(x, y) ≤ 9 = H(2, 0), for all
(x, y) ∈ B[2][2], and (2, 0) is the only maximum point of H on B[2][2], we see that
0 ≤ r ≤ 3 and, moreover, r = 0 implies that A = B = (−1, 0) and r = 3 yields
A = B = (2, 0). In any case, [1] gives t1 = t2 and thus (x1, y1, t1) = (x2, y2, t2). This is
what we want. Hence, we may work with 0 < r < 3. Some observations on the ellipse
Er: its semi-minor axis is r and its semi-major axis is

√
2 r; it is contained in the open

disk B[2](2), when r < 1; when r = 1, it is contained in the compact disk B[2][2] and
Er ∩ B[2][2] = {(−2, 0)}; if r > 1, the intersection Er ∩ B[2][2] equals the arc of the Er
joining the points I1 and I2, as in the picture below (the angle θ that appears in it will
be considered later). Now, we parametrize Er by

E(t) = (r cos(t)− 1, r
√
2 sin(t)), t ∈ [−π, π].

For the moment, we consider 1 < r < 3. A direct calculation shows that

I1 = (xI , yI) =

(
−2 +

√
2
√
r2 − 1,

√
2

√
1− r2 + 2

√
2
√
r2 − 1

)
,

and I2 = (xI ,−yI). We have unique angles TI ∈ (0, π) and T ∈ (−π, π) such that
E(TI) = I1 and E(T ) = A (there exists an analogous angle for B as well). Hence,

r > 1r < 1 r = 1

I2
Er

Er
Er

22 2xx x
T

A
AA TI

I1

y θ = arccos(− 1
r )yy

Figure 7. Geometric support for the Example 2.4
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

cos(TI) =
1 + xI
r

=

√
2
√
r2 − 1− 1

r
,

sin(TI) =
yI

r
√
2
=

√
1− r2 + 2

√
2
√
r2 − 1

r
,

cos(T ) =
x1 + 1

r
,

sin(T ) =
y1

r
√
2
.

(2.2)

Claim 2:

−TI = − arccos

(√
2
√
r2 − 1− 1

r

)
≤ T ≤ TI = arccos

(√
2
√
r2 − 1− 1

r

)
.

This claim follows from the discussion above.

Claim 3:

−TI = − arccos

(√
2
√
r2 − 1− 1

r

)
≤ T ≤ TI = arccos

(√
2
√
r2 − 1− 1

r

)
.

This claim follows from the discussion above.

Claim 4: without restrictions on r, we have that

x1 sin (t2 − t1) +
y1 (cos (t2 − t1)− 1)√

2
+ t2 − t1 + sin (t2 − t1) = 0. (2.3)

In fact, firstly

(f(t2)−G∗(B, t2)) · f ′(t2) = (−x2N(t2) + y2B(t2)) · f ′(t2) = 0.

On the other hand, since G∗(B, t2) = G∗(A, t1),

0 = (f(t2)−G∗(B, t2)) · f ′(t2) = (f(t2)−G∗(A, t1)) · f ′(t2)

= x1 sin (t2 − t1) +
y1 (cos (t2 − t1)− 1)√

2
+

+ t2 − t1 + sin (t2 − t1) ,
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after some simplifications. Now, we get the fundamental function g of our example,
obtained from the left side of (2.3) by putting s = t2 − t1 ≥ 0 and by using the
properties of the angle T in (2.2), namely:

g(s) = s− r sin(T ) + r sin(s+ T ), s ≥ 0.

Note that g(0) = 0. The main idea is to show that s = 0 is the only zero of g. Suppose,
for a moment, that this is indeed true. The equation above, together with (2.3), says
that t2 − t1 is a zero of g. Hence t1 = t2. By using [1] of the claim 1 and the equation
(3), we deduce that (

(x1 + 1) cos (t1)
(x1 + 1) sin (t1)

)
=

(
(x2 + 1) cos (t1)
(x2 + 1) sin (t1)

)
,

or
((x1 − x2) cos(t1), (x1 − x2) sin(t1)) = (0, 0).

Therefore, x1 − x2 = 0 and (x1, y1, t1) = (x2, y2, t2), as we desire. In general, g can
have positive zeros, but with the constraints that come from our problem, this cannot
happen and, in fact, g must have only a zero, as we will see below.

In the cases 0 < r ≤ 1, the problem is very simple. Indeed, since

g′(s) = r cos(s+ T ) + 1 ≥ 1− r ≥ 0.

we get that g is increasing and its critical points are isolated, which implies that g
is a strictly increasing function. In particular, g(s) > 0, for all s > 0. Hence, g has
no positive zero and we are done: (x1, y1, t1) = (x2, y2, t2). We are left with the cases
1 < r < 3, which involves many technicalities. Firstly, since A and B belong to the disk
B[2][2], we have that the absolute values of their coordinates are lower than or equal to
2. Hence, by using [1] in the claim 1, we get s = |s| = |t2 − t1| ≤ 2

√
2 < π. Therefore,

we can consider g defined in [0, π]:

g(s) = s− r sin(T ) + r sin(s+ T ), 0 ≤ s ≤ π,

subject to the constraints
−π < −TI ≤ T ≤ TI < π,

where TI = arccos(h(r)),

h(r) =

√
2
√
r2 − 1− 1

r
,

and always keeping in mind that

cos(T ) =
x1 + 1

r
, sin(T ) =

y1

r
√
2
,
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A = (x1, y1) and, thus, r and T are all fixed. Another important date in our discussion
is the angle θ ∈ (π

2
, π) (as shown in the Figure 7) given by θ = arccos(−1

r
). Of course

θ > TI , because h(r) +
1
r
> 0 and the arccos is a strictly decreasing function. Our

strategy will be to describe the critical points of g and then to show that g is positive
at each of these points, which implies that g > 0 on (0, π], according to the next lemma
(Lemma 2.5). We are going to describe the critical points of g. For this purpose, let
sc ∈ (0, π) be a critical point of g.

Claim 5: the critical point sc satisfies only one of the following descriptions:

sc + T = θ;[1]

sc + T = −θ;[2]

sc + T = −θ + 2π.[3]

Indeed, since g′(sc) = 1 + r cos(sc + T ) = 0, we get that either sc + T = θ + 2kπ
or sc + T = −θ + 2kπ, for some integer k. This, together with θ ∈ (π/2, π) and
sc + T ∈ (−π, 2π), due to the constraints on sc and T , implies the three items above.

Claim 6: g(sc) > 0.

We will use separately each case in the claim 4.

[1] Here, sc + T = θ, whence

g(sc) = sc − r sin(T ) + r sin(θ) = (θ + r sin(θ))− (r sin(T ) + T ) = ψ(θ)− ψ(T ),

where,
ψ(u) = u+ r sin(u).

Of course g(sc) > 0, if T ≤ 0. When

0 < T < TI < θ < π,

we need a more delicate analysis, as follows. It is not hard to see that ψ, on the
interval [0, π], attains its strict global maximum at u = θ, its only critical point.
Hence, g(sc) = ψ(θ)− ψ(T ) > 0.

[2] Now, sc + T = −θ. Hence, −π < sc + T < −π
2
and cos(sc + T ) = −1/r. Suppose,

by contradiction, that g(sc) ≤ 0. Since g(0) = 0 and

g′(0) = 1 + r cos(|T |) ≥ 1 + r cos(TI) =
√
2
√
r2 − 1 > 0,
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we would have g(s1) = 0, for some 0 < s1 ≤ sc. Therefore, we would have
g′(s2) = 0, for some 0 < s2 < sc, hence cos(sc + T ) = cos(s2 + T ) = −1/r and
−π < s2+T < sc+T < −π/2. We have an absurdity, because the cos is injective
in (−π,−π/2).

[3] sc + T = −θ + 2π. Actually, this is the harder part of our example. First, note
that T > 0. We have

g (sc) = g(−θ−T +2π) = −θ−T +2π− r sin(T )− r sin(θ) = 2π− (ψ(θ)+ψ(T )).

Now, since ψ (see (6)) is strictly increasing in (0, θ), we get −ψ(T ) > −ψ(TI) and
thus

g (sc) = 2π − (ψ(θ) + ψ(T )) > 2π − (ψ(θ) + ψ(TI)) = 2π − η(r),

where

η(u) =

(
arccos

(
−1

u

)
+
√
u2 − 1

)
+

+

(
arccos

(√
2
√
u2 − 1− 1

u

)
+

√
1− u2 + 2

√
2
√
u2 − 1

)
,

u ∈ [1, 3], which we can patiently verify the following:

η(1) = 2π;(i)

η(3) = 2
√
2 + arccos

(
−1

3

)
< 2π;(ii)

η′(u) = 0 if and only if u =
√
3;(iii)

η(
√
3) = 2

√
2 + arccos

(
− 1√

3

)
+ arccos

(
1√
3

)
= 2

√
2 + π < 2π,

for arccos(−x) + arccos(x) is constant and equal to π.

(iv)

These properties imply that u = 1 is the global maximum point for η. Hence,
η(u) < 2π in the interval (1, 3). As a matter of fact, since η(1) > η(

√
3) > η(3),

η is strictly decreasing in [1, 3]. So g(sc) = 2π − η(u) > 0.

We are almost done, because we still need to verify that g(π) = π − 2r sin(T ) > 0.
The lemma that we will use requires this fact, which will be left as an exercise. We
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suggest to consider separately 1 < r <
√

3
2
, case in which TI >

π
2
, and

√
3
2
≤ r < 3,

where TI ≤ π
2
. Of course the result is trivial if T ≤ 0. Putting this all together, we

get that g(0) = 0, g > 0 at its critical points and g(π) > 0. By using lemma below,
it follows that g > 0 in (0, π). Thus, g vanishes only at s = 0 and it follows that
(X, t1) = (Y, t2) (see the main idea that we had talked above), that is, G∗ and G are
both injective.

It remains to show that Γ∗ is a maximal genuine tube, that is, if R > 2 then G∗

is no longer injective. In fact, let R > 2 and define r = R
2
> 1. Then let s0 be a

positive solution of s − r sin s = 0 (the left side is the function g for T = π) that
exists, according to Lemma 2.6 bellow. Now put P1 = (X1, 0), X1 = (0,−1 − r), and
P2 = (Y1, s0), Y1 = (−1− r cos(s0),

√
2 s0). Of course P1 ̸= P2, G

∗ (P1) = (−r, 0, 0) and

G∗ (P2) =

(
r
s20
r2

− r − s0
s0
r
, s0 cos (s0)− r

s0
r
cos (s0) , 0

)
= (−r, 0, 0) = G∗(P1).

Moreover ∥X1∥ = 1 + r < R, by the construction of r, and ∥Y1∥ < R, because Y1
belongs to the ellipse

(x+ 1)2 +
y2

2
= r2 =

R2

4
,

whose intersection with the circle x2 + y2 = R2 is empty, given that the system formed
by these curves has no solution in R2. By working a little harder, we can establish that

G∗(0,−1− r, t) = G∗(−1− r cos(s0),
√
2 s0, t+ s0) = (−r cos(t),−r sin(t), t),

for an arbitrary t. Finally, we see below a piece of the infinite disk tube Γ∗, say Γ1,

x
y

x
yN

Te1 B
e2

G∗e3

B[2]× [0, 2π]
Γ2

N
Γ1

TB
S × [0, 2π]t

z

Figure 8. Genuine tubes around the circular helix

ReviSeM, Ano 2022, No. 196–227 212



Seixas, J.A.P. & Barbosa, I.I.

together with another genuine tube Γ2 ⊂ Γ1, whose cross sections arecopies of the
region

S =

{
(x, y); −1 ≤ x ≤ 1, −x

2

4
− 1 ≤ y ≤ x2

4
+ 1

}
. (2.4)

The tubes Γ1 and Γ2 are obtained for t running from 0 to 2π. In Example 3.4, we
calculate their volumes.

Lemma 2.5. Let g : [0, b] −→ R be a differentiable function such that g(0) ≥ 0 and
g(b) > 0. If either g has no critical point in (0, b) or g is positive at each of its critical
points, then g > 0 in (0, b].

Proof. Suppose, by contradiction, that g(x1) ≤ 0 for some x1 ∈ (0, b). Hence, there
exists x0 ∈ [x1, b) such the g(x0) = 0, since g(b) > 0. By using the Rolle’s theorem, if
g(0) = 0, we get xc ∈ (0, x0) such that g′(xc) = 0. If g(0) > 0, the minimum value of
g in [0, b] is smaller than or equal to zero, because g(x0) = 0 and thus this minimum
value must occur at some xc ∈ (0, b), where g′ vanishes. Hence, g must be positive in
(0, b], if g has no critical point. Now, we suppose that g(xc) > 0, whenever g′(xc) = 0.
We have that g′(x0) ̸= 0, by hypothesis. If g′(x0) < 0, we choose x1 > x0 where g is
negative. This implies that the minimum value of g in [x0, b] is negative and occurs in
(x0, b), say at xc. Hence g

′(xc) = 0 and g(xc) < 0, a contradiction. The case g′(x0) > 0
leads to a similar contradiction, now by taking x1 < x0 where g is negative.

Lemma 2.6. If r > 1, then there exists s0 ∈ (0, π) such that s0 − r sin s0 = 0.

Proof. Define g(s) = s− r sin s, s ∈ R. If s ̸= 0, g(s) = s
(
1− r sin s

s

)
and, since

lim
s→0

(
1− r

sin s

s

)
= 1− r < 0,

we can choose s1 > 0 near to zero such that g(s1) < 0. But g(π) = π > 0. From the
Intermediate Value Theorem, we obtain s0 between s1 and π such that g(s0) = 0, as
we wanted.

3 On the Volume of Tubes

The calculation of the volume of disk tubes in Rn+1 and in the euclidean sphere
Sn appears in [8]. Actually, the main goal of such a paper is to work within the
sphere. In [5], the author generalizes the Pappus theorems for genuine tubes around an
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arbitrary curve in R3. In the case of the second Pappus theorem, his proof makes use
of the divergence theorem. Here, we will establish such a theorem for genuine tubes in
Rn+1 by using a different strategy, namely, the formula for change variable in multiple
integrals.

Next, we will consider an interval I = [a, b] and the tube Γ = ΓP (f,ΩI(S)) generated

by the solid ΩI(St) around the curve f : J ⊃ I −→ Rn+1 and centered at P (t) = (P̃ , t),

where St ⊂ Rn × {t} has positive volume and P̃ = (p1, p2, . . . , pn) is constant. Thus,
the cross sections of Γ are stuck to f by the same point. We have that Γ is the image
of ΩI(St) under G : Rn × J −→ Rn+1 given by

G(X, t) = f(t) +
n∑

j=1

(xj − pj)Vj+1(t), (3.1)

where (X, t) = (x1, x2, . . . , xn, t). Moreover, exactly as in the proof of Theorem 2.2, we
have that

| det JG(x1, x2, . . . , xn, t)| = ν(t)|1− (x1 − p1)κ1(t)|.

Let R ∈ R be a positive number smaller than the radius of curvature ρ = 1
supJ κ1(t)

.

Let B[n](P̃ , R) be the open disk centered at P̃ of radius R in Rn. Then, for all X =

(x1, x2, . . . , xn) ∈ B[n](P̃ , R) and t ∈ J , we have that

| det JG(x1, x2, . . . , xn, t)| = ν(t)|1−(x1−p1)κ1(t)| = ν(t)(1−(x1−p1)κ1(t)) > 0, (3.2)

because

(x1 − p1)κ1 ≤ |x1 − p1| sup
J

κ1 ≤
∥∥∥X − P̃

∥∥∥ sup
J

κ1 < ρ sup
J

κ1 = 1.

We refer to the inequality in (3.2) as fundamental regularity condition. We refer to the
inequality in (3.2) as fundamental regularity condition.

Remark 3.1. The formula above is obtained from the default map G in (2.1). For
example, if we use the vector field −V2(t) instead V2(t) and consider the map

G∗(X, t) = f(t)− (x1 − p1(t))V2(t) +
n∑

j=2

(xj − pj(t))Vj+1(t),

the absolute value of its jacobian becomes

| det JG∗(x1, x2, . . . , xn, t)| = ν(t)|1 + (x1 − p1)κ1(t)|.
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Now, suppose that ΩI(St) ⊂ B[n](P̃ , R)×J , and that G is injective in B[n](P̃ , R)×J .
By using the change of variables formula for multiple integrals and the Fubini theorem,
it follows that

vol Γ =

∫
Γ

dy1dy2 . . . dyn+1 =

∫
G(ΩI(St))

dy1dy2 . . . dyn+1

=

∫
ΩI(St)

| det JG| dx1dx2 . . . dxn dt

=

∫ b

a

ν(t)

(∫
St

(1− (x1 − p1)κ1(t)) dx1dx2 . . . dxn

)
dt

=

∫ b

a

ν(t)(volSt) dt−
∫ b

a

ν(t)κ1(t)

(∫
St

x1 dx1dx2 . . . dxn

)
dt+

+ p1

∫ b

a

ν(t)κ1(t)(volSt) dt,

(3.3)

From this, we will get a series of interesting results on the volume of the tubes. For
instance, under a reasonable condition on the injectivity of G, vol Γ does not change
if we replace the (n − 1) last coordinates of P̃ by any (n − 1)-tuple. This means that
we can shift the axis of the tube orthogonally to V2 without altering the volume of the
tube.

Now, we give a definition. Given a compact set S ⊂ Rn with volS > 0, we define
the barycenter of S to be the point B(S) = (c1, c2, . . . , cn), where

cj =
1∫

S
dx1dx2 . . . dxn

∫
S

xj dx1dx2 . . . dxn

=
1

volS

∫
S

xj dx1dx2 . . . dxn,

(3.4)

1 ≤ j ≤ n. In some situations we use B(S, j) to mean cj.
By using this definition, (3.3) becomes

vol Γ =

∫ b

a

ν(t) volSt dt−
∫ b

a

ν(t)κ1(t) (volSt)B(St, 1) dt+ p1

∫ b

a

ν(t)κ1(t) volSt dt.

In particular, if St = S is constant,

vol Γ = (volS) l(f, I) + (volS) (p1 − B(S, 1))
∫ b

a

ν(t)κ1(t) dt, (3.5)

where l(f, I) is the length of arc of the curve f from t = a to t = b.
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Proposition 3.2. Given A = (a1, a2, . . . , an) and R > 0, the barycenter of the compact
disk centered at A and of radius R, B[n][A,R] ⊂ Rn, is its center.

Proof. We can suppose without loss of generality that A is the origin of Rn. Let
S = B[n][R]. From∫

S

xn dx1dx2 . . . dxn =

∫
Bn−1[R]

(∫ √
R2−

∑n−1
i=1 x2

i

−
√

R2−
∑n−1

i=1 x2
i

xndxn

)
dx1dx2 . . . dxn−1 = 0,

we get that B(S, n) = 0. Now, for 1 ≤ j ≤ n− 1,

∫
S

xj dx1dx2 . . . dxn =

∫ R

−R

(∫
Bn−1[

√
R2−x2

n]

xj dx1dx2 . . . dxn−1

)
dxn

=

∫ R

−R

(
vol(Bn−1[

√
R2 − x2n])B(Bn−1[

√
R2 − x2n], j)

)
dxn

=

∫ R

−R

0dxn = 0,

by using induction on n. Hence, B(S) equals the origin of Rn.
The second Pappus theorem, as the original version as its generalization in [5],

deals with the calculation of volumes of tubes with constant cross sections and axes
passing trough the barycenters of these sections. In our case this means that St = S,
ΩI(St) = S × I, P̃ = B(S) and Γ = G(S × I), as in the picture bellow, where we
are taking account all discussion just before equation (3.3). For such a genuine tube,
we have the following theorem that generalizes the second Pappus theorem for tubes
in Rn+1.

Theorem 3.3. vol Γ = l(f, I) volS, where l(f, I) is the length of the curve f from
t = a to t = b. In other words, the volume of the tube is the product of the length of
the curve traveled by the barycenter of S and the volume of the cross section S.

Proof. Initially, note that p1 = B(S, 1). By replacing this fact in (3.5), we obtain easily
that vol Γ = (volS) l(f, I), as we wanted.

Another application of equation (3.5) is the calculation of volumes of the traditional
and genuine disk tubes with variable radius, say R(t), that is, for each t ∈ J , the cross
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section St equals the disk B[n][R(t)] and P (t) = (0, . . . , 0, t) or P̃ is the center of the
disk B[n][R(t)]. In this situation, we have p1 = 0 and B(St, 1) = 0 which implies that

vol Γ =

∫ b

a

ν(t) vol (B[n][R(t)]) dt = vol (B[n])

∫ b

a

ν(t)(R(t))n dt, (3.6)

where vol (B[n]) is the volume of the compact unit disk which can be recursively obtained
from

vol (B[n]) = vol (B[n−1])

∫ 1

−1

(1− x2)
n−1
2 dx,

where vol (B[1]) = vol ([−1, 1]) = 2, as can be seen in [4] (page 74). In particular,
we get the volume of the revolution solid Γα generated by the plane curve α(t) =
(R(t), 0, 0, . . . , 0, t) ∈ Rn+1, t ∈ [a, b], around the yn+1-axis, namely,

vol Γα = vol (B[n])

∫ b

a

(R(t))n dt,

because, in this case, f(t) = (0, 0, . . . , 0, t) an thus ν = 1. This result appears in [1]
(equation (2.2)).

Example 3.4. Consider the tubes Γ1 and Γ2 in Example 2.4. Γ1 is a disk tube of
constant radius, namely R(t) = 2. The speed ν =

√
2. Thus its volume is

vol (Γ1) = area(B[2][2]) l(f, [0, 2π]) = 4π

∫ 2π

0

√
2 dt = 8

√
2π2.

For Γ2, at first, note that B(S) = (0, 0) and that

areaS = 2

∫ 1

−1

(
x2

4
+ 1

)
dx =

13

3
.

Hence

vol (Γ2) = area(S) l(f, [0, 2π]) =
26
√
2π

3
.

In both cases, we have used Theorem 3.3, because the axis of the tube (the circular

helix) passes trough the barycenter of the cross section, that is, P̃ = B(S). In the

examples that we have discussed so far, P̃ has been chosen to be the barycenter of the
cross section S. We now make a more instructive example. Indeed, consider the same
cross section S as that of the tube Γ2 (see (2.4)) and P̃ = (1

2
, 0). Now, it is exactly at

this point that the circular helix f(t) = (cos t, sin t, t), t ∈ [0, 2π], will meet S to form
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the tube Γ3. We have that p1 =
1
2
and B(S, 1) = 0. A full geometric description of this

case is in the picture bellow, where Γ3 = G(S × [0, 2π]) and the default map G is given
by

G(x, y, t) = f(t) +

(
x− 1

2

)
N(t) + yB(t),

that is injective in B[2][P̃ , 2]× R by the result in Example 2.4. Since S ⊂ B[2][P̃ , 2], it
follows that Γ3 also is genuine and its volume is

vol (Γ3) = (areaS) l(f, I) + (areaS) (p1 − B(S, 1))
∫ b

a

ν(t)κ1(t) dt

=
13

3
2π

√
2 +

13

3

(
1

2
− 0

)
2π

√
2
1

2
=

26

3
π
√
2 +

13π
√
2

6
=

65π
√
2

6
.

Observe that the disk tube G(B[2][P̃ , 2]× [0, 2π]) coincides with Γ1, that was obtained
with another map in Example 2.4. For completeness, let us include one more example,
namely, a disk tube of variable radius around the same arc of the circular helix f . For
this, consider R(t) = 1 + 1

2
sin t and Γ4 the disk tube of radius R(t), 0 ≤ t ≤ 2π.

This is to be to say that the cross sections of Γ4 are the disks St = B[2][R(t)]. Since
0 < R(t) < 2, Γ4 = G(Ω[0.2π]St) is genuine, where, of course, G must be changed to

G(x, y, t) = f(t) + xN(t) + yB(t).

By using (3.6), we get that

vol (Γ4) = area (B[2])

∫ b

a

ν(t)(R(t))2 dt = π

∫ 2π

0

√
2

(
sin(t)

2
+ 1

)2

dt =
9π2

2
√
2
.

x
y

y1
y2NP̃(0, 0) P (t)B[P̃ , 2]

TBS Γ3

x

GR = 2

N

y TB G(B[P̃ , 2]× [0, 2π])B(P̃ , 2)× [0, 2π]
t y3S × [0, 2π]

Figure 9. Tubes of Example 3.4
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x

y y1
y2N

P (t) TB
e1 Ge2

e3
St = B[2][R(t)]

Γ4

N

TBΓ1

t y3
Ω[0,2π]St

Figure 10. Disk Tubes of Example 3.4

4 On the Volume (Area) of Sphere Tubes

We start with a genuine compact disk tube Γ ⊂ Rn+1 of variable radius, say R(t) > 0,
and centered at the centers of its cross sections (see the left picture in Figure 10 above).
So, we have a compact solid of revolution around the t-axis

ΩI = ΩI(B
[n][R(t)]) = {(X, t); ∥X∥ ≤ R(t)},

where X = (x1, x2, . . . , xn) and t ∈ I = [a, b], a curve f , with Frenet frame

{V1(t), V2(t), . . . , Vn+1(t)},

defined in J ⊃ I, and the default map G,

G(X, t) = f(t) +
n∑

j=1

xj Vj+1(t).

Next, we suppose that G is injective, satisfies the fundamental regularity condition (3.2)
in some neighborhood of the ΩI and that Γ = G(ΩI). Denoting by Sn−1 the unit sphere
of Rn, we see that the boundary of ΩI is given by

∂ΩI = (B[n][R(a)], a) ∪ ∂lΩI ∪ (B[n][R(b)], b),
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where
∂lΩI = {(R(t)X, t); X ∈ Sn−1},

X = (x1, x2, . . . , xn) and t ∈ I = [a, b], is what we call the lateral hypersurface of ΩI .
The image of this hypersurface of revolution under G will be called lateral hypersurface
of Γ and will be denoted by ∂lΓ. It is a sphere tube. Thus, if

φ(U) = (φ1(U), φ2(U), . . . , φn(U)),

U = (u1, u2, . . . , un−1), is a parametrization for Sn−1, which we may take as an orthog-
onal parametrization, then

H(U, t) = G(φ(U), t) = f(t) +R(t)
n∑

j=1

φj(U)Vj+1(t), (4.1)

U ranging over some region of Rn−1, describes the hypersurface ∂lΓ. Our main goal in
this section is to get the volume (or area) element of ∂lΓ associated to H, that is,

d(∂lΓ) =
√

det(gij) du1 du2 . . . dun−1 dt,

where (gij) is the symmetric matrix of the first fundamental form of ∂lΓ with respect
to H. More precisely, gij =

∂H
∂ui

· ∂H
∂uj

, 1 ≤ i, j ≤ n− 1, gin = ∂H
∂ui

· ∂Y
∂t
, 1 ≤ i ≤ n− 1, and

gnn = ∂H
∂t

· ∂H
∂t
. We remember that√

det(gij) =

∥∥∥∥∂H∂u1 ∧ ∂H

∂u2
∧ · · · ∧ ∂H

∂un−1

∧ ∂H

∂t

∥∥∥∥ =

∥∥∥∥∂H∂u1 × ∂H

∂u2
× · · · × ∂H

∂un−1

× ∂H

∂t

∥∥∥∥
and that

N(U, t) = N(u1, u2, . . . , un−1, t) =

∂H
∂u1

× ∂H
∂u2

× · · · × ∂H
∂un−1

× ∂H
∂t√

det(gij)

is the Gauss map of ∂lΓ. The next Lemma will be useful for our objective.

Lemma 4.1. Let D be the following (n× n) “almost” diagonal symmetric matrix

D =


a1 0 . . . 0 b1
0 a2 . . . 0 b2
...

...
. . .

...
...

0 0 0 an−1 bn−1

b1 b2 . . . bn−1 an

 ,
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where aj ̸= 0, for all j. Then

det D = a1 · · · an−1

(
an −

(
b21
a1

+ · · ·+
b2n−1

an−1

))
.

Proof. After some elementary operations on the rows of D, we obtain that detD equals

a1 · · · an−1 det



1 0 . . . 0 b1
a1

0 1 0 . . . b2
a2

0 0
. . . 0

...

0 0 0 1 bn−1

an−1

0 0 . . . 0 an − b21
a1

− b22
a2

− · · · − b2n−1

an−1

 ,

whence the result follows easily.
Now, let us return to the function H in (4.1), where we consider φ as an orthogonal

parametrization of Sn−1, that is, ∂φ
∂ui

· ∂φ
∂uj

= 0, whenever i ̸= j. In other words, given

U = (u1, . . . , un−1), the set {
∂φ

∂u1
,
∂φ

∂u2
, . . . ,

∂φ

∂un−1

}
is an orthogonal basis of the tangent space of Sn−1 at φ(U). Moreover, since φ · φ = 1,
it follows that φ · ∂φ

∂uj
= 0, 1 ≤ j ≤ n− 1. Now, we will study the properties of H.

Proposition 4.2. The parametrization H of ∂lΓ has the following properties, where
the H0 stands for the vector H(U, t)− f(t).

∥H0∥2 = (R(t))2;(i) ∂H
∂ui

· ∂H
∂uj

= 0, i ̸= j, 1 ≤ i, j ≤ n− 1;(ii)

H0 · ∂H
∂uj

= 0, i ̸= j, 1 ≤ i, j ≤ n− 1;(iii)

H0 · ∂H
∂t

= R(t)R′(t);(iv)

span

{
H0,

∂H

∂u1
, . . . ,

∂H

∂un−1

}
= span{V2(t), V3(t), . . . , Vn+1(t)};

(v)
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∂H

∂t
(U, t) = ν(t) (1−R(t)φ1(U)κ1(t)) V1(t) +

∂̃H

∂t
(U, t),

where
∂̃H

∂t
(U, t) ∈ span{V2(t), V3(t), . . . , Vn+1(t)}.

(vi)

Proof. The properties (i), (ii) and (iii) follow easily from those of φ, which we cited
above. Differentiating (i) with respect to t, we get H0 · ∂H0

∂t
= R(t)R′(t). But

∂H0

∂t
=
∂H

∂t
− ν(t)V1(t)

and H0 is perpendicular to V1. Hence (iv) holds true. For (v), observe that

span

{
H0,

∂H

∂u1
, . . . ,

∂H

∂un−1

}
⊂ span{V2(t), . . . , Vn+1(t)}

and that both subspaces have the same dimension. The alternative (vi) is obtained by
a direct calculation, by using the Frenet equations.

Now, we can establish the main result of this section, where, for simplicity, in the
larger formulas, we will use R = R(t), κ1 = κ1(t), V1 = V1(t), ϕ1 = ϕ1(U) and
U = (u1, u2, . . . , un−1).

Theorem 4.3. (i) The volume (area) element d(∂lΓ) is equal to

Rn−1 dSn−1
√
ν2 (1− φ1Rκ1) 2 + (R′)2 dt,

where dSn−1 is the volume (area) element of the unit sphere Sn−1;

(ii)

N(U, t) = ±
ν (φ1Rκ1 − 1)

(
H0 +

RR′

ν(φ1Rκ1−1)
V1

)
R
√
ν2 (φ1Rκ1 − 1)2 +R′2

.

In particular, if ∂lΓ is of revolution, then

d(∂lΓ) = (R(t))n−1 dSn−1
√

1 + (R′(t))2 dt,
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where dSn−1 is the volume element of the unit sphere Sn−1, and hence

vol(∂lΓ) = vol(Sn−1)

∫ b

a

(R(t))n−1
√

1 + (R′(t))2 dt.

Also, in this case, the Gauss map is

N(U, t) = ± 1√
1 + (R′(t))2

(φ(U),−R′(t)) .

Proof. We start by setting U0 = H0/R(t), aj =
∥∥∥ ∂H
∂uj

∥∥∥2, Uj = ∂H
∂uj
/
√
aj, bj = ∂H

∂uj
· ∂H

∂t
,

for j running from 1 to n− 1, and an =
∥∥∂H

∂t

∥∥2. The vectors Uj, 0 ≤ j ≤ n− 1, form an
orthonormal basis for the subspace in (v) of Proposition 4.2. We have that (gij), the
matrix of the first fundamental form of ∂lΓ with respect to H, is equal to the matrix
D of Lemma 4.1. From this lemma it follows that

det(gij) =

∥∥∥∥∂H∂u1
∥∥∥∥2 ∥∥∥∥∂H∂u2

∥∥∥∥2 · · · ∥∥∥∥ ∂H

∂un−1

∥∥∥∥2
(∥∥∥∥∂H∂t

∥∥∥∥2 − n−1∑
j=1

(
∂H

∂t
· Uj

)2
)

=

∥∥∥∥∂H∂u1
∥∥∥∥2 ∥∥∥∥∂H∂u2

∥∥∥∥2 · · · ∥∥∥∥ ∂H

∂un−1

∥∥∥∥2
∥∥∥∥∂H∂t

∥∥∥∥2 − n−1∑
j=1

(
∂̃H

∂t
· Uj

)2


(4.2)

Note that,∥∥∥∥∂H∂t
∥∥∥∥2− n−1∑

j=1

(
∂̃H

∂t
· Uj

)2

= ν(t)2 (1−R(t)φ1(U)κ1(t))
2+

∥∥∥∥∥ ∂̃H∂t
∥∥∥∥∥
2

−
n−1∑
j=1

(
∂̃H

∂t
· Uj

)2

,

by (vi) above, and ∥∥∥∥∥ ∂̃H∂t
∥∥∥∥∥
2

=

(
∂̃H

∂t
· U0

)2

+
n−1∑
j=1

(
∂̃H

∂t
· Uj

)2

,

because ∂̃H
∂t

∈ span{U0, U1, . . . , Un−1}. Moreover,(
∂̃H

∂t
· U0

)2

=

(
∂H

∂t
· H0

R(t)

)2

= (R′(t))2,
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where we use (iv) of Proposition 4.2. Putting this all together in (4.2), we obtain that

det(gij) =

∥∥∥∥∂H∂u1
∥∥∥∥2 ∥∥∥∥∂H∂u2

∥∥∥∥2 · · · ∥∥∥∥ ∂H

∂un−1

∥∥∥∥2 (ν(t)2 (1−R(t)φ1(U)κ1(t))
2 + (R′(t))2

)
=

∥∥∥∥R ∂φ

∂u1

∥∥∥∥2 ∥∥∥∥R ∂φ

∂u2

∥∥∥∥2 · · · ∥∥∥∥R ∂φ

∂un−1

∥∥∥∥2 (ν2 (1−Rφ1(U)κ1)
2 + (R′)2

)
= (R)2(n−1)

∥∥∥∥ ∂φ∂u1
∥∥∥∥2 ∥∥∥∥ ∂φ∂u2

∥∥∥∥2 · · · ∥∥∥∥ ∂φ

∂un−1

∥∥∥∥2 (ν2 (1−Rφ1(U)κ1)
2 + (R′)2

)
,

from which d(∂lΓ) can be easily seen. For the Gauss map, we start by remembering
that the vectors H0 and V1 are perpendicular to ∂H

∂uj
, for 1 ≤ j ≤ n − 1, and that

H0 · ∂H
∂t

= RR′. Thus, it is natural try to find some λ ∈ R such that H0 + λV1 also is
perpendicular to ∂H

∂t
. By solving the equation (H0 + λV1) · ∂H

∂t
= 0, we get that

λ =
R(t)R′(t)

ν(t) (φ1(U)R(t) κ1(t)− 1)
.

Hence N equals ± H0+λV1

∥H0+λV1∥ . For the case when the hypersurface ∂lΓ is of revolution,

we just do f(t) = (0, 0, . . . , t), ν = 1, V1 = (0, 0, . . . , 1), κ1 = 0 and Vj = ej−1, for
2 ≤ j ≤ n + 1, in (i) and (ii), where ej is the j-th element of the canonical basis of
Rn+1. To end this proof, we remark that the Gauss map N is well defined due to the
regularity condition (3.2), which implies that

(1− φ1(U)R(t) κ1(t)) > 0,

because |φ1(U)| ≤ 1. Thus ∂lΓ is, in fact, a piece of a regular hypersurface of Rn+1.
We are done.

We have the following corollary which shows that the first theorem of Pappus holds
true for sphere tubes of radius constant in Rn+1.

Corollary 4.4. If R(t) = R is constant, then

vol(∂lΓ) = vol(Sn−1(R)) l(f, I),

where Sn−1(R) is the sphere of radius R centered at origin.
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Proof. From (i) of Theorem 4.3, we get that

vol(∂lΓ) =

∫
∂lΓ

d(∂lΓ) = Rn−1

∫ b

a

ν(t)

(∫
Sn−1

dSn−1 (1− φ1(U)Rκ1(t))

)
dt

= Rn−1vol(Sn−1) l(f, I)−Rn

∫ b

a

ν(t)κ1(t)

(∫
Sn−1

φ1(U) dSn−1

)
dt

= vol(Sn−1(R)) l(f, I),

because
∫
Sn−1 φ1(U) dSn−1 = 0, according to the next lemma.

Lemma 4.5.
∫
Sn−1 xj dSn−1 = 0, for 1 ≤ j ≤ n, that is, the barycenter of the sphere is

its center.

Proof. Consider the (n− 1)-form

ω =
n∑

i=1

(−1)n−1xi dx1 ∧ dx2 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn,

where the hat ̂ over a 1-form means that the correspondent 1-form is excluded
from the wedge product. As we know, the restriction of ω to Sn−1 equals dSn−1 and
dω = n dx1 ∧ dx2 ∧ . . . ∧ dxn. Hence,

d(xj dSn−1) = d(xj ω) = dxj ∧ ω + nxj dx1 ∧ dx2 ∧ . . . ∧ dxn

= (−1)j−1 dxj ∧ ( dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn) + nxj dx1 ∧ . . . ∧ dxn

= (n+ 1)xj dx1 ∧ dx2 ∧ . . . ∧ dxn.

Now, the theorem of Stokes gives us that∫
Sn−1

xj dSn−1 = (n+ 1)

∫
B[n]

xjdx1dx2 . . . dxn = 0,

by using the Proposition 3.2. Here B[n] ⊂ Rn is the compact unit disk.

Remark 4.6. The arguments above show that vol(Sn−1(R)) = nRn−1 vol(B[n]).
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[15] Süha Yilmaz, S. & Turgut, M.. A method to calculate Frenet apparatus of the
curves in euclidean-5 space. International Scholarly and Scientific Research &
Innovation, (2008) 2, No:7:483–485.

Received: 26 March 2022.
Accepted: 24 August 2022.

ReviSeM, Ano 2022, No. 196–227 227


	1 Introduction
	2 Constructing tubes 
	3 On the Volume of Tubes
	4 On the Volume (Area) of Sphere Tubes

