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In this work, we study the well-posedness of the Cauchy problem associated with the
coupled Schrödinger equations with quadratic nonlinearities, which appears modeling
problems in nonlinear optics. We obtain the local well-posedness for data in Sobolev
spaces with low regularity. To obtain the local theory, we prove new bilinear estimates
for the coupling terms of the system in the continuous case. Concerning global results,
in the continuous case, we establish the global well-posedness in Hs(R) ×Hs(R), for
some negatives indexes s. The proof of our global result uses the I-method introduced
by Colliander et al. Published by AIP Publishing. https://doi.org/10.1063/1.5045337

I. INTRODUCTION

This work is dedicated to the study of the Cauchy problem for a system that appears model-
ing some problems in the context of nonlinear optics. More precisely, we will study the following
mathematical model:




i∂tu(x, t) + p∂2
x u(x, t) − θu(x, t) + ū(x, t)v(x, t)= 0, x ∈R, t ≥ 0,

iσ∂tv(x, t) + q∂2
x v(x, t) − αv(x, t) + a

2 u2(x, t)= 0,

u(x, 0)= u0(x), v(x, 0)= v0(x),

(1)

where u and v are complex valued functions and α, θ, and a B 1/σ are real numbers representing
physical parameters of the system, whereσ > 0 and p, q =±1. The model (1) is given by the nonlinear
coupling of two dispersive equations of Schrödinger type through the quadratic terms

N1(u, v)= u · v and N2(u, v)=
1
2

u · v . (2)

Physically, according to the article,15 the complex functions u and v represent amplitude packets
of the first and second harmonic of an optical wave, respectively. The values of p and q may be 1 or �1,
depending on the signals provided between the scattering/diffraction ratios and the positive constantσ
measures the scaling/diffraction magnitude indices. In recent years, interest in nonlinear properties of
optical materials has attracted attention of physicists and mathematicians. Many research studies sug-
gest that by exploring the nonlinear reaction of the matter, the bit-rate capacity of optical fibers can be
considerably increased and in consequence an improvement in the speed and economy of data trans-
mission and manipulation. Particularly in non-centrosymmetric materials, those having no inversion
symmetry at the molecular level, the nonlinear effects of lower order give rise to second order sus-
ceptibility, which means that the nonlinear response to the electric field is quadratic; see, for instance,
Refs. 12 and 9.

Another application for system (1) is related to the Raman amplification in a plasma. The study
of laser-plasma interactions is an active area of interest. The main goal is to simulate nuclear fusion in
a laboratory. In order to simulate numerically these experiments, we need some accurate models. The
kinetic ones are the most relevant but very difficult to deal with practical computations. The fluids
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ones like the bifluid Euler–Maxwell system seem more convenient but still inoperative in practice
because of the high frequency motion and the small wavelength involved in the problem. This is why
we need some intermediate models that are reliable from a numerical viewpoint.3

In the mathematical context, Hayashi, Ozawa, and Tanaka in Ref. 11 obtained local well-
posedness for the Cauchy problem (1) on the spaces L2(Rn) × L2(Rn) for n ≤ 4 and H1(Rn)
× H1(Rn) for n ≤ 6. In Ref. 14, the time decay estimates of small solutions to the systems
under the mass resonance condition in 2-dimensional space were revised. The authors also
showed the existence of wave operators and modified wave operators of the systems under some
mass conditions in n-dimensional space, where n ≥ 2, and showed the existence of scatter-
ing operators and finite time blow-up of the solutions for the systems in higher dimensional
spaces.

Regarding to qualitative properties of Cauchy problem solutions (1), we know that in the case
where p = q = 1 the system was studied by Linares and Angulo in Ref. 1 for initial data u0, v0 in
the same periodic Sobolev space Hs(T). More precisely, they obtained local well-posedness results
in Hs(T) × Hs(T) for all s ≥ 0 and obtained global well-posedness in the space L2(T) × L2(T)
using the conservation of the mass by the flow of the system, that is, the following conservation
law:

E(u(t), v(t))=
∫ +∞

−∞

(
|u|2 + 2σ |v |2

)
dx =E(u0, v0). (3)

Remark 1. The authors also observed in Comment 2.3 of Ref. 1 that results can be obtained for
data with lower regularity when σ is different from 1, including well-posedness in Hs

per × Hs
per for

s > �1/2. Furthermore, in the same work, stability and instability results were established for certain
classes of periodic pulses. Another work devoted to the study of the existence and stability of wave
type pulses for this model is due to Yew (see Ref. 17).

The techniques used in Ref. 1 to obtain the results of local well-posedness follow the ideas in
Ref. 13, developed by Kenig, Ponce, and Vega, where the initial value problem for a Schrödinger
equation with quadratic nonlinearities in both periodic and continuous domains is studied. More
precisely, they considered the following initial value problem:




iut + ∂2
x u=Nj(u, ū), x ∈R or x ∈T, t ≥ 0,

u(x, 0)= u0(x),
(4)

where N1(u, ū) = uū, N2(u, ū) = u2, and N3(u, ū) = ū2. The authors considered ini-
tial data in the Sobolev space Hs. In the continuous case, they proved local well-
posedness for s > �1/4 in the case j = 1 and for s > �3/4 in the cases j = 2, 3.
In the periodic case, local well-posedness was obtained for s ≥ 0 when j = 1 and for s > �1/2
when j = 2, 3. To prove the local theory, they used the Fourier restriction method, known in the
literature, as Xs ,b-spaces and introduced by Bourgain in Ref. 2. In this functional space, sharp
bilinear estimates were proved. These estimates combined with the Banach Fixed Point Theorem
applied to the integral operator associated with (1) allowed us to obtain the desired local solutions.
The lack of a conservation law for (4) does not allow us to get global results in some space, as
usual.

We note that the results given in Ref. 13 can be applied to system (1) in the case where σ = 1. In
this situation, it is not difficult to obtain the local well-posedness in Hs × Hs for s > �1/4. However,
a natural question arises:

What would be the scenery of the local and global well-posedness of system (1) when σ , 1 and
for initial data in Sobolev spaces, not necessarily with the same regularity?

In this work, we consider the Cauchy problem (1) with any σ > 0 and initial data (u0, v0)
belonging to Sobolev spaces Hκ(R)×Hs(R) to answer the previous question. As far as we know, the
local well-posedness for system (1) in low regularity is unknown.
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We will follow the ideas developed by Corcho and Matheus in Ref. 8, where they treated the
Schrödinger-Debye system, modelled by




iut + 1
2∂

2
x u= uv , x ∈R, t ≥ 0,

µvt + v =±|u|2, µ > 0,

u(x, 0)= u0(x), v(x, 0)= v0(x),

(5)

which also has quadratic type nonlinearities and the authors developed a local and global theory
in Sobolev spaces with different regularities. They used the method also based on obtaining sharp
bilinear estimates for the coupling terms in suitable Bourgain spaces as well as the use of fixed point
techniques.

Moreover, in the same work, global results were obtained by using a technique known as the
I-method which was first implemented by Colliander et al. in Ref. 4.

Before enunciating the main results, we have given the following definition.

Definition 1. Given σ > 0, we say that the Sobolev index pair (κ, s) verifies the hypotheses Hσ

if it satisfies one of the following conditions:

(a) |κ| � 1/2 ≤ s < min{κ + 1/2, 2κ + 1/2} for 0 < σ < 2;
(b) κ = s ≥ 0 for σ = 2;
(c) |κ| � 1 ≤ s < min{κ + 1, 2κ + 1} for σ > 2.

We denote
WσB

{
(κ, s) ∈R2; (κ, s) verify the hypothesis Hσ

}
. (6)

Throughout the paper, we fix a cutoff function ψ in C∞0 such that 0 ≤ ψ(t) ≤ 1,

ψ(t)=



1, if |t | ≤ 1

0, if |t | ≥ 2
(7)

and ψT (t)=ψ
(

t
T

)
.

Our main local well-posedness result is the following statement.

Theorem 1. For any σ > 0 and (u0, v0) ∈ Hκ ×Hs where the Sobolev index pair (κ, s) verifying
the hypothesis Hσ , there exist a positive time T =T (‖u0‖Hκ , ‖v0‖Hs ,σ) and an unique solution
(u(t), v(t)) for the initial value problem (1), satisfying

ψT (t)u ∈ Xκ, 1
2 + and ψT (t)v ∈ X

κ, 1
2 +

1/σ , (8)

u ∈C([0, T ]; Hκ(R)) and v ∈C
(
[0, T ]; Hs(R)

)
. (9)

Moreover, the map (u0, v0) 7−→ (u(t), v(t)) is locally Lipschitz from Hκ(R) × Hs(R) into
C([0, T ]; Hκ(R) × Hs(R)).

Concerning global well-posedness, we have the following result.

Theorem 2. In the following cases:

• σ = 2 and s = 0;
• σ > 2 and s ≥ �1/2;
• 0 < σ < 2 and s ≥ �1/4.

The Cauchy problem associated with system (1) is globally well-posed, i.e., there exists a unique
solution for any T > 0 with initial condition (u0, v0) ∈Hs(R) × Hs(R).

Now we describe the structure of our work. Section II is devoted to summarize some preliminary
results. In Sec. III, we will develop a local theory in Bourgain spaces, following closely the techniques
used in Refs. 13 and 8, where for each positive σ we obtain quite general results in Sobolev spaces
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FIG. 1. Region Wσ .

with regularities out of the diagonal case κ = s. Specifically, we will prove local well-posedness for
data (u0, v0) ∈ Hκ × Hs with indices (κ, s) ∈Wσ (see Fig. 1).

Finally, in Sec. IV, we will use the I-method to extend globally the local solutions obtained for
data in Hs × Hs with values of s for some negatives. More precisely, we have regularity − 1

4 ≤ s ≤ 0
when 0 < σ < 2 and − 1

2 ≤ s ≤ 0 when σ > 2. At this point, the use of a refined Strichartz-type
estimate in Bourgain’s spaces for the Schrödinger equation will be crucial. For details, the reader can
see Ref. 5.

II. PRELIMINARY RESULTS

We consider the equation of the form

i∂tω − φ(−i∂x)ω =F(ω), (10)

where φ is a measurable real-valued function and F is a nonlinear function.
The Cauchy problem for (10) with initial data ω(0) = ω0 is rewritten as the following integral

equation:

ω(t)=Wφ(t)ω0 − i
∫ t

0
Wφ(t − t ′)F(ω(t ′))dt ′, (11)

where Wφ(t)= e−itφ(−i∂x) is the group that solves the linear part of (10).
Let Xs ,b(φ) be the completion of S (R2) with respect to the norm

‖ f ‖Xs,b(φ)B



Wφ(−t)f 


Hb

t (R,Hs
x )

=



〈ξ〉

s〈τ〉bF
(
eitφ(−i∂x)f

)
(τ, ξ)


L2

τL2
ξ

=



〈ξ〉

s〈τ + φ(ξ)〉b f̂ (τ, ξ)


L2
τL2

ξ

.

(12)

The following lemma was proved while establishing the local well-posedness of the Zakharov
system by Ginibre, Tsutsumi, and Velo in Ref. 10.
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Lemma 1. Let − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1, ψ be a cutoff function, and T ∈ [0, 1]. Then for

F ∈ Xs ,b′(φ), we have



ψ1(t)Wφ(t)ω0




Xs,b(φ)
≤C‖ω0‖Hs , (13)







ψT (t)

∫ t

0
Wφ(t − t ′)F(ω(t ′))dt ′






Xs,b(φ)
≤CT1+b′−b‖F‖Xs,b′ (φ). (14)

Proof. See Lemma 2.1 in Ref. 10. �

In our case, we shall use the space Xs ,b(φ) for the phase functions φ1(ξ) = ξ2 and φa(ξ) = aξ2.
Indeed we can rewrite system (1) in the form




i∂tu − φ1(−i∂x)u − θu + ūv = 0,

i∂tv − φa(−i∂x)v − αv + a
2 u2 = 0, a > 0.

(15)

Then we have
Xκ,b(φ1)=Xκ,b, Wφ1 = eit∂2

x

and
Xs,b(φa)=Xs,b

a , Wφa = eiat∂2
x .

We finish this section with the following elementary integral estimates which will be used to
estimate the nonlinear terms in Sec. III.

Lemma 2. Let p, q > 0, for r = min{p, q} with p + q > 1 + r, there exists C > 0 such that∫
R

dx
〈x − α〉p 〈x − β〉q

≤
C

〈α − β〉r
. (16)

Moreover, for q > 1
2 , ∫

R

dx

〈α0 + α1x + x2〉q
≤C for all α0, α1 ∈R. (17)

Proof. See Lemma 2.3 in Ref. 13. �

III. BILINEAR ESTIMATES FOR THE COUPLING TERMS

The main results in the section are the following propositions which present the bilinear estimates
for different values of σ > 0. Each case leads us to different restrictions on the Sobolev indices s
and κ.

A. Bilinear estimates for σ > 2

Next we prove a new bilinear estimate when σ > 2 (σ = 1/a).

Proposition 1. Let 0 < a < 1
2 (equivalently σ > 2), u ∈ Xκ ,b, and v ∈ Xs,b

a with 1/2 < b < 3/4, 1/4
< d < 1/2, and |κ| � s ≤ 1, then the bilinear estimate holds

‖u · v ‖Xκ ,−d ≤C‖u‖Xκ ,b · ‖v ‖Xs,b . (18)

The second result is the following

Proposition 2. Let 0 < a < 1
2 (equivalentlyσ > 2) and u, ũ ∈Xκ ,b with 1/2< b< 3/4, 1/4< d < 1/2

and s < κ + 1 if κ ≥ 0 and s < 2κ + 1 if κ < 0 then, the following estimate holds

‖u · ũ‖Xs,−d
a
≤C‖u‖Xκ ,b · ‖ũ‖Xκ ,b . (19)

Proof of the Proposition 1. We define
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f (ξ, τ)= 〈τ − ξ2〉b〈ξ〉κ û(ξ, τ) and g(ξ, τ)= 〈τ + aξ2〉b〈ξ〉s v̂(ξ, τ).

Therefore, ‖ f ‖L2
ξ ,τ
= ‖u‖Xκ ,b and ‖g‖L2

ξ ,τ
= ‖v ‖Xs,b

a
.

It follows that

‖u · v ‖Xκ ,−d =



〈τ + ξ2〉−d〈ξ〉κ û · v(ξ, τ)


L2

ξ ,τ

= sup
‖ϕ ‖

L2
ξ ,τ ≤1

������

∫
R4

〈ξ〉κ〈ξ1〉
−κ〈ξ2〉

−s

〈τ + ξ2〉d〈τ1 − ξ
2
1〉

b〈τ2 + aξ2〉
b

f (ξ1, τ1)g(ξ2, τ2)ϕ(ξ, τ)dξ2dτ2dξdτ
������
.

We use the following notation:




τ = τ1 + τ2 ξ = ξ1 + ξ2

ω = τ + ξ2, ω1 = τ1 − ξ
2
1 , ω2 = τ2 + aξ2

2

(20)

and we define

W (f , g, ϕ)=
∫
R4

〈ξ〉κ〈ξ1〉
−κ〈ξ2〉

−s

〈ω〉d〈ω1〉
b〈ω2〉

b
f (ξ1, τ1)g(ξ2, τ2)ϕ(ξ, τ)dξ2dτ2dξdτ.

Now it is suffices to prove that

|W (f , g, ϕ)| ≤ c ‖f ‖L2 · ‖g‖L2 · ‖ϕ‖L2 .

Consider R4 ⊂R1 ∪R2 ∪R3, where Rj ⊂R4 for j ∈ {1, 2, 3}. We write

Wj = (f , g, ϕ)=
∫
Rj

〈ξ〉κ〈ξ1〉
−κ〈ξ2〉

−s

〈ω〉d〈ω1〉
b〈ω2〉

b
f (ξ1, τ1)g(ξ2, τ2)ϕ(ξ, τ)dξ2dτ2dξdτ

and observe that |W | ≤ |W1| + |W2| + |W3|.
We estimate each case separately. Using the Cauchy-Schwarz and Hölder inequalities and

Fubini’s Theorem, we obtain

|W1 |
2 =

�����

∫
R1

〈ξ〉κ〈ξ1〉
−κ〈ξ2〉

−s

〈ω〉d〈ω1〉
b〈ω2〉

b
f (ξ1, τ1)g(ξ2, τ2)ϕ(ξ, τ)dξ2dτ2dξdτ

�����

2

≤ ‖f ‖2L2 ‖g‖
2
L2 ‖ϕ‖

2
L2







〈ξ〉2κ

〈ω〉2d

(∫
R2

〈ξ1〉
−2κ〈ξ2〉

−2s χR1 dξ2dτ2

〈ω1〉
2b〈ω2〉

2b

)




L∞ξ ,τ

.

Similarly, we have

|W2 |
2 ≤ ‖f ‖2L2 ‖g‖

2
L2 ‖ϕ‖

2
L2







〈ξ2〉

2s

〈ω2〉
2b

(∫
R2

〈ξ1〉
−2κ〈ξ〉2κ

〈ω1〉
2b〈ω〉2d

χR2 dξdτ

)




L∞ξ2,τ2

and

|W3 |
2 ≤ ‖f ‖2L2 ‖g‖

2
L2 ‖ϕ‖

2
L2







〈ξ1〉

−2κ

〈ω1〉
2b

(∫
R2

〈ξ〉2κ〈ξ2〉
−2s

〈ω〉2d〈ω2〉
2b
χR3 dξ2dτ2

)




L∞ξ1,τ1

.

Using Lemma 17 and the fact 〈ξ〉2κ〈ξ1〉
−2κ ≤ 〈ξ2〉

2 |κ | , we get the following inequalities:

〈ξ〉2κ

〈ω〉2d

∫
R2

〈ξ1〉
−2κ〈ξ2〉

−2s χR1

〈ω1〉
2b〈τ2 + aξ2

2〉
2b

dξ2dτ2 ≤
1

〈ω〉2d

∫
R

〈ξ2〉
−2s+2 |κ | χR1

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2︸                                                    ︷︷                                                    ︸
J1

,
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〈ξ2〉
2s

〈ω2〉
2b

∫
R2

〈ξ1〉
−2κ〈ξ〉2κ χR2

〈ω1〉
2b〈ω〉2d

dξdτ ≤
1

〈τ2 + aξ2
2〉

2b

∫
R

〈ξ2〉
−2s+2 |κ | χR2

〈τ2 + 2ξ2 + ξ2
2 − 2ξξ2〉

2d
dξ︸                                                     ︷︷                                                     ︸

J2

,

〈ξ1〉
−2κ

〈ω1〉
2b

∫
R2

〈ξ〉2κ〈ξ2〉
−2s χR3

〈ω〉2d〈ω2〉
2b

dξ2dτ2 ≤
1

〈τ1 − ξ
2
1〉

2b

∫
R

〈ξ2〉
−2s+2 |κ | χR3

〈τ1 − aξ2
2 + ξ2〉2d

dξ2︸                                          ︷︷                                          ︸
J3

.

It is enough to show that the functionals J1, J2, and J3, defined below, are bounded

J1 =
1

〈τ + ξ2〉2d

∫
R

〈ξ2〉
−2s+2 |κ | χR1

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2, (21)

J2 =
1

〈τ2 + aξ2
2〉

2b

∫
R

〈ξ2〉
−2s+2 |κ | χR2

〈τ2 + 2ξ2 + ξ2
2 − 2ξξ2〉

2d
dξ, (22)

J3 =
1

〈τ1 − ξ
2
1〉

2b

∫
R

〈ξ2〉
−2s+2 |κ | χR3

〈τ1 − aξ2
2 + ξ2〉2d

dξ2. (23)

In order to do so, we start by discussing the dispersion of relations. Note that

|ω − ω1 − ω2 | = |ξ
2 + ξ2

1 − aξ2
2 |

≥ |1 − a|(ξ2 + ξ2
1) − 2a|ξξ1 |, suppose 0 < a <

1
2

≥ (1 − a)(ξ2 + ξ2
1) − a(ξ2 + ξ2

1)= (1 − 2a)(ξ2 + ξ2
1).

It follows that

3 max{|ω |, |ω1 |, |ω2 |} ≥ (1 − 2a) max{ξ2, ξ2
1 } ≥

1 − 2a
4

ξ2
2 .

Suppose that |ξ2| ≥ 1, then we have

1
max{|ω |, |ω1 |, |ω2 |}

≤
c

|ξ2 |
2

.

Now, we define Rj,

R1 =

{
|ξ2 | ≥ 1, |ω | =max{|ω |, |ω1 |, |ω2 |}

}
∪

{
|ξ2 | ≤ 1

}
⊂R4

ξ ,τ,ξ2,τ2
, (24)

R2 =

{
|ξ2 | ≥ 1, |ω1 | =max{|ω |, |ω1 |, |ω2 |}

}
⊂R4

ξ ,τ,ξ2,τ2
, (25)

R3 =

{
|ξ2 | ≥ 1, |τ2 + aξ2 | =max{|ω |, |ω1 |, |ω2 |}

}
⊂R4

ξ ,τ,ξ2,τ2
. (26)

Let us prove that J1 is bounded. Indeed, if |ξ2| ≤ 1, then J1 is equivalent to

1

〈ω〉2d

∫
|ξ2 | ≤1

1

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤ c.

If |ξ2| ≥ 1, then J1 is bounded by∫
|ξ2 | ≥1

〈ξ2〉
−2s+2 |κ |+4d χR1

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2.

Note that J1 is bounded, when |κ| � s ≤ 2d < 1 because b > 1/2.
To prove that J2 is bounded, it is suffices to note that the integral below is higher than J2 and

that converges since |κ| � s ≤ 2b and that 2d > 1/2, that is, b < 3/4.∫
R

〈ξ2〉
−2s+2 |κ |−4b χR2

〈τ2 + 2ξ2 + ξ2
2 − 2ξξ2〉

2d
dξ.
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Analogously, a similar way, we can prove that J3 is bounded, by using that |κ| � s ≤ 2b and
b < 3/4. �

Now we prove that the second non-linear term of the system is bounded.

Proof of the Proposition 2. Analogous to the previous proposition, the estimate (19) is equivalent to
prove that the functionals J4, J5, and J6, defined below, are bounded

J4 =
1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χS1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2, (27)

J5 =
1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χS2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ, (28)

J6 =
1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χS3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2, (29)

where S1 ∪ S2 ∪ S3 =R4 with Sj being measurable.
Note that

|λ − λ1 − λ2 | = |aξ
2 − ξ2

1 − ξ
2
2 |

≥ |1 − a|(ξ2
1 + ξ2

2) − 2a|ξ1ξ2 |, suppose 0 < a <
1
2

≥ (1 − a)(ξ2
1 + ξ2

2) − a(ξ2
1 + ξ2

2)= (1 − 2a)(ξ2
1 + ξ2

2),

indeed ξ = ξ1 + ξ2 such that |ξ | ≤ |ξ1| + |ξ2| ≤ 2 max{ξ1, ξ2}. Hence,

3 max{|λ |, |λ1 |, |λ2 |} ≥ (1 − 2a) max{ξ2
1 , ξ2

2 } ≥
1 − 2a

4
ξ2.

Therefore, supposing that |ξ | ≥ 1, we have

1
max{|λ |, |λ1 |, |λ2 |}

≤
c

|ξ |2
.

Now, we define the regions Si,

S1 =

{
|ξ | ≥ 1, |λ | =max{|λ |, |λ1 |, |λ2 |}

}
∪

{
|ξ | ≤ 1

}
⊂R4

ξ ,τ,ξ2,τ2
, (30)

S2 =

{
|ξ | ≥ 1, |λ1 | =max{|λ |, |λ1 |, |λ2 |}

}
⊂R4

ξ ,τ,ξ2,τ2
, (31)

S3 =

{
|ξ | ≥ 1, |τ2 + ξ2 | =max{|λ |, |λ1 |, |λ2 |}

}
⊂R4

ξ ,τ,ξ2,τ2
. (32)

For κ ≥ 0, we have 〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉−2κ and in this case

J4 ≤

∫
R

〈ξ〉2s−2κ+4d χS1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2. (33)

Therefore, J4 is bounded since s � κ + 2d < 0 for s � κ < 2d.
Note that J5 and J6 satisfy,

J5 ≤

∫
R

〈ξ〉2s−2κ−4b χS2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ (34)

and

J6 ≤

∫
R

〈ξ〉2s−2κ−4b χS3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2, (35)

and that they are bounded since s � κ < 2b and 2d > 1
2 , that is, b< 3

4 .
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When κ < 0 we analyse the following subcases:

1. Considering |ξ1 | ≤
2
3 |ξ2 |, we have 〈ξ1〉

−2κ〈ξ2〉
−2κ ≤ 〈ξ2〉

−4κ . Moreover, |ξ2 | ≤ |ξ1 | + |ξ | ≤
2 |ξ2 |

3 +
|ξ |, hence |ξ2| ≤ 3|ξ |. Therefore,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

2. Supposing |ξ2 | ≤
2
3 |ξ1 |, we have

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

3. The last case, 2
3 |ξ2 | < |ξ1 | <

3
2 |ξ2 |.

(a) If ξ1, ξ2 ≥ 0, then 2
3 ξ2 < ξ1 <

3
2 ξ2 =⇒

5
3 ξ2 < ξ <

5
2 ξ2. Hence,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

(b) If ξ1, ξ2 ≤ 0, then −2
3 ξ2 <−ξ1 <

−3
2 ξ2 =⇒

−5
3 ξ2 <−ξ <

−5
2 ξ2, thus |ξ2 | <

3
5 |ξ |. Hence,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

(c) If ξ1 > 0 and ξ2 < 0, then −2
3 ξ2 < ξ1 <

−3
2 ξ2 =⇒

1
3 ξ2 < ξ <

−1
2 ξ2 =⇒ |ξ | <

1
2 |ξ2 |.

(d) If ξ1 < 0 and ξ2 > 0, then 2
3 ξ2 <−ξ1 <

3
2 ξ2 =⇒

−1
3 ξ2 <−ξ <

1
2 ξ2, consequently |ξ | < 1

2 |ξ2 |.

The cases (1), (2), [3(a)], and [3(b)] are true for κ < 0 and s < 2κ + 1.
Indeed, given A ⊂R4 the set of the elements of R4 that satisfies one of conditions (1), (2), [3(a)],

or [3(b)], given B=R4 \A. Now consider Ai =Si ∩A and Bi =Si ∩ B.
Analyzing the restrictions Ai, we get

J4 =
1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χB1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2

≤

∫
R

〈ξ〉2s−4κ−4d χA1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2.

Then J4 is bounded for s ≤ 2κ + 2d and b < 3/4.

J5 =
1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χA2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ

≤

∫
R

〈ξ〉2s−4κ−4b χA2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ

and J5 is bounded for s ≤ 2κ + 2b and 1/2 < b.

J6 =
1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χA3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2

≤

∫
R

〈ξ〉2s−4κ−4b χA3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2.

Then J6 is also bounded for s ≤ 2κ + 2b and 1/2 < b.
To analyze the remaining cases (which is equivalent to supposing |ξ | < 1

2 |ξ2 | and |ξ1| ∼ |ξ2|) let
us consider them as regions Bi

We start by estimating J4,

J4 =
1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χB1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2

≤

∫
R

〈ξ〉2s−4d〈ξ1〉
−4κ χB1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2

≤

∫
R

〈ξ〉2s−4d〈ξ1〉
−4κ χB1

2|ξ2 − ξ |〈η〉2b
dη.
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Now, |ξ2 − ξ | ≥ |ξ2 | − |ξ | ≥
1
2 |ξ2 | ∼

1
2 |ξ1 |.

Hence, J4 ≤ 〈ξ〉
2s−4d〈ξ1〉

−4κ−1
∫R

dη

〈η〉2b
, that is bounded because 2b > 1 and 2s ≤ 4κ + 2.

〈ξ〉2s−4d〈ξ1〉
−4κ−1 ≤ 〈ξ〉2s−4κ−4d−1.

We continue to estimate J5,

J5 =
1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χB2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ

≤
1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ2〉
−4κ χB2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ.

Setting η = τ2 + (a− 1)ξ2 − ξ2
2 + 2ξξ2 such that dη = 2(ξ2 + (a � 1)ξ)dξ. Now, as 0 < a < 1

2 , it follows
|a � 1| < 1 and therefore |ξ2 + (a − 1)ξ | ≥ 1

2 |ξ2 |. Observe still that

|η | = |τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2 |

= |λ2 + ((a − 1)ξ2 − 2ξ2
2 + 2ξξ2)|

≤ |λ2 | + |(a − 1)ξ2 − 2ξ2
2 + 2ξξ2 | ≤ |τ2 + ξ2 | + 4|ξ2 |

2

≤ c|λ2 |.

Thus,

J5 ≤
1

〈λ2〉
2b

∫
〈η〉≤c〈λ2〉

〈ξ〉2s〈ξ2〉
−4κ−1

〈η〉2d
dη

≤
1

〈λ2〉
2b

∫
〈η〉≤c〈λ2〉

〈ξ2〉
max{0,2s}−4κ−1

〈η〉2d
dη, because |ξ | <

1
2
|ξ2 |

≤ 〈ξ2〉
max{0,2s}−4κ−1 〈λ2〉

2d

〈λ2〉
2b

≤ 〈ξ2〉
max{0,2s}−4κ−1〈λ2〉

−2b+2d ≤ 〈ξ2〉
max{0,2s}−4κ−1−2b+2d .

We prove J6. Remember that

J6 =
1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χB3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2

≤
1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−4κ χB3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2.

Let η = τ1 + aξ2 + ξ2
2 such that dη = 2ξ2dξ2. Now,

|η | = |τ1 + aξ2 + ξ2
2 |

= |(λ1) + (aξ2 + ξ2
2 − ξ

2
1)|

≤ c|λ1 |.

And using that |ξ1| ∼ |ξ2|, we obtain

J6 ≤
1

〈λ1〉
2b

∫
〈η〉≤c〈λ1〉

〈ξ〉2s〈ξ1〉
−4κ

|ξ1 |〈η〉2d
dξ2

≤ 〈ξ1〉
max{0,2s}−4κ−1 〈λ1〉

2d

〈λ1〉
2b

≤ 〈ξ1〉
max{0,2s}−4κ−1−2b+2d .

As 1/2 < b < 3/4 and 1/4 < d < 1/2, we get �1 < �2b + 2d < 0 and hence we can take b and d so that
2s � 4κ � 1 � 2b + 2d < 0 if s < 2k + 1.

Then, we completed the proof of Proposition 2. �

Remark 2. The lines s = �κ � 1 and s = 2κ + 1 intersect each other at the point where κ =− 2
3 .
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B. Bilinear estimates for σ < 2

For a > 1/2, we have some results present below.

Proposition 3. Assume that a > 1/2 (equivalently σ < 2), u ∈ Xκ ,b, and v ∈ Xs,b
a , then the bilinear

estimate below holds if 1/2 < b < 3/4, 1/4 < d < 1/2, and |κ| � s ≤ 1/2,

‖u · v ‖Xκ ,−d ≤C‖u‖Xκ ,b · ‖v ‖Xs,b . (36)

The second estimate tells us that

Proposition 4. Let a > 1/2 (equivalently σ < 2), u, ũ ∈ Xκ ,b with 1/2 < b < 3/4 and
1/4 < d < 1/2. The estimate

‖u · ũ‖Xs,−d ≤C‖u‖Xκ ,b · ‖ũ‖Xκ ,b (37)

holds for s ≤min{κ + 1/2, 2κ + 1/2}.

Proof of Proposition 3: We start by considering the dispersion relation.
Note that

|ω − ω1 − ω2 | = |ξ
2 + ξ2

1 − aξ2
2 |

≥ |2ξ2 − 2ξξ2 + (1 − a)ξ2
2 |, using a >

1
2

, we have

= 2|ξ − µaξ2 | · |ξ − (1 − µa)ξ2 |, where µa =
1 −
√

2a − 1
2

.

Note that the above dispersion relation has two regions: the lines ξ = µaξ2 and ξ = (1 � µa)ξ2 making
it difficult to use the relationship. Observe that if a= 1

2 , then µa = 1 − µa =
1
2 and if a = 1, then

µa = 0 (the case a= 1
2 will be treated separately, while the case a = 1 does not require much attention

despite being the case without modification).1

Before doing it, consider

A1 = {|ξ2 | ≤ 1} ⊂R4,

A2 =

{
|ξ2 | ≥ 1, |(1 − a)ξ2 − ξ | >

2a − 1
4
|ξ2 |

}
⊂R4,

A3 =

{
|ξ2 | ≥ 1,

�����
ξ −

1
2
ξ2

�����
>

2a − 1
4
|ξ2 |

}
⊂R4.

Note that if ���ξ −
1
2 ξ2

��� ≤
2a−1

4 |ξ2 |,
���ξ −

1
2 ξ2

��� ≤
2a−1

4 |ξ2 |, and |ξ2| ≥ 1, then(
a −

1
2

)
|ξ2 | =

�����

(
ξ −

1
2
ξ2

)
+ ((1 − a)ξ2 − ξ)

�����

≤
2a − 1

4
|ξ2 | +

2a − 1
4
|ξ2 | =

1
2

(
a −

1
2

)
|ξ2 |.

This contradiction implies R4 =A1 ∪A2 ∪A3.
Now consider,

A3,1 =A3 ∩ {|ω | ≥max{|ω1 |, |ω2 |}},

A3,2 =A3 ∩ {|ω2 | ≥max{|ω1 |, |ω |}},

A3,3 =A3 ∩ {|ω1 | ≥max{|ω |, |ω2 |}}.

Remember that |2ξ2 + ξ2
2 − 2ξξ2 | ≤ 3 max{|ω |, |ω1 |, |ω2 |}.

Now, we define the regionsRi (analogous to the proof of proposition 1). LetR1 =A1∪A2∪A3,1,
R2 =A3,2 and R3 =A3,3.

We will show that J1 is bounded. Indeed, if |ξ2| ≤ 1, then J1 is equivalent to

1

〈ω〉2d

∫
|ξ2 | ≤1

1

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤ c.
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If |ξ2| ≥ 1, then

J1 ≤
1

〈ω〉2d

∫
|ξ2 | ≥1

〈ξ2〉
−2s+2 |κ | χA2

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2.

Changing the variable η = τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2, we get

dη =−2((1 − a)ξ2 − ξ)dξ2

and, using the fact that |κ| � s ≤ 1/2, obtain the following equations:

1

〈ω〉2d

∫
|ξ2 | ≥1

〈ξ2〉
−2s+2 |κ | χA2

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤ c
1

〈ω〉2d

∫
|ξ2 | ≥1

〈ξ2〉
−2s+2 |κ |−1 χA2

〈η〉2b
dη

≤ c
1

〈ω〉2d

∫
R

1

〈η〉2b
dη ≤ c.

Now, note that in A3,1 we have

|(1 − a)ξ2 − ξ | =
�����
1
2
ξ2 − ξ +

(
1
2
− a

)
ξ2

�����
≥

(
a −

1
2

)
|ξ2 | −

2a − 1
4
|ξ2 | ≥ c|ξ2 |.

To complete the estimate of J1, we change variable to get

1

〈ω〉2d

∫
|ξ2 | ≥1

〈ξ2〉
−2s+2 |κ | χA3,1

〈τ − (a − 1)ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤ c
1

〈ω〉2d

∫
|ξ2 | ≥1

〈ξ2〉
−2s+2 |κ |−1 χA3,1

〈η〉2b
dη

≤ c
1

〈ω〉2d

∫
R

1

〈η〉2b
dη ≤ c.

To prove that J2 is bounded just observe that

1

〈τ + aξ2〉2b

∫
R

〈ξ2〉
−2s+2 |κ | χR2

〈τ2 + 2ξ2 + ξ2
2 − 2ξξ2〉

2d
dξ =

1

〈ω2〉
2b

∫
R

〈ξ2〉
−2s+2 |κ | χA3,2

〈τ2 + 2ξ2 + ξ2
2 − 2ξξ2〉

2d
dξ

≤
1

〈ω2〉
2b

∫
〈η〉≤4〈ω2〉

〈ξ2〉
−2s+2 |κ |−1

〈η〉2d
dη

≤
1

〈ω2〉
2b−2d

.

In the first inequality above, we made the change of variable η = τ2 + 2ξ2 + ξ2
2 − 2ξξ2 and used the

fact that
|η | = |ω2 + (ω − ω1 − ω2)| ≤ 4|ω2 |.

We estimate J3. Analogous to the last estimate, we get

1

〈τ − ξ2
1〉

2b

∫
R

〈ξ2〉
−2s+2 |κ | χR3

〈τ1 − aξ2
2 + ξ2〉2d

dξ2 =
1

〈ω1〉
2b

∫
|ξ2 |>1

〈ξ2〉
−2s+2 |κ | χA3,3

〈τ1 − aξ2
2 + ξ2〉2d

dξ2

≤
1

〈ω1〉
2b

∫
〈η〉≤4〈ω1〉

〈ξ2〉
−2s+2 |κ |−1

〈η〉2d
dη

≤
1

〈ω1〉
2b−2d

.

Note that we used the fact that τ1 − aξ2
2 + ξ2 =ω1 + (ω − ω1 − ω2).

This finishes the proof of the first inequality. �

Proof of Proposition 4. Initially, we have that

|λ − λ1 − λ2 | = |aξ
2 − ξ2

1 − ξ
2
2 |

≥ |2ξ2
2 − 2ξξ2 + (1 − a)ξ2 | using a >

1
2

we have

= 2|ξ2 − µaξ | · |ξ2 − (1 − µa)ξ |, where µa =
1 −
√

2a − 1
2

.
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The dispersion relation above is zero in two straight lines.
Now, we define

B1 = {|ξ | ≤ 1} ⊂R4,

B2 =

{
|ξ | ≥ 1,

�����
ξ2 −

1
2
ξ

�����
>

2a − 1
4
|ξ |

}
⊂R4,

B3 =

{
|ξ | ≥ 1, |(1 − a)ξ − ξ2 | >

2a − 1
4
|ξ |

}
⊂R4.

Note that if ���ξ2 −
1
2 ξ

��� ≤
2a−1

4 |ξ | and ���ξ2 −
1
2 ξ

��� ≤
2a−1

4 |ξ | and still |ξ | > 1, then(
a −

1
2

)
|ξ | =

�����

(
ξ2 −

1
2
ξ

)
+ ((1 − a)ξ − ξ2)

�����

≤
2a − 1

4
|ξ | +

2a − 1
4
|ξ | =

1
2

(
a −

1
2

)
|ξ |.

Again, this contradiction implies R4 =B1 ∪ B2 ∪ B3.
Now, consider

B3,1 =B3 ∩ {|λ | ≥max{|λ1 |, |λ2 |}},

B3,2 =B3 ∩ {|λ2 | ≥max{|λ1 |, |λ |}},

B3,3 =B3 ∩ {|λ1 | ≥max{|λ |, |λ2 |}}.

We define the regions Si (analogous to the proof of proposition 2), setting S1 =B1 ∪ B2 ∪ B3,1,
S2 =B3,2 and S3 =B3,3.

For κ ≥ 0, we have 〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉−2κ

J4 ≤
1

〈λ〉2d

∫
R

〈ξ〉2s−2κ χS1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2, (38)

J5 ≤
1

〈λ2〉
2b

∫
R

〈ξ〉2s−2κ χS2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ, (39)

J6 ≤
1

〈λ1〉
2b

∫
R

〈ξ〉2s−2κ χS3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2. (40)

To complete the proof that J4 is bounded it is sufficient to show that (38) satisfies:

1

〈λ〉2d

∫
R

〈ξ〉2s−2κ χB1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤
1

〈λ〉2d

∫
R

1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤ c,

1

〈λ〉2d

∫
R

〈ξ〉2s−2κ χB2

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤
1

〈λ〉2d

∫
R

〈ξ〉2s−2κ−1

〈η〉2b
dξ2 ≤ c, and

1

〈λ〉2d

∫
R

〈ξ〉2s−2κ χB3,1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤
1

〈λ〉2d

∫
R

〈ξ〉2s−2κ−1

〈η〉2b
dξ2 ≤ c.

In the estimates above, we used the fact b > 1/2 and also the fact that
�����
ξ2 −

1
2
ξ

�����
=

�����
(1 − a)ξ − ξ2 +

(
a −

1
2

)
ξ

�����

≥

(
a −

1
2

)
|ξ | − |(1 − a)ξ − ξ2 |

≥

(
a −

1
2

)
|ξ | −

1
2

(
a −

1
2

)
|ξ | =

2a − 1
4
|ξ |.
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Let us estimate (39), using the fact that

η = τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2 = λ2 + (λ − λ1 − λ2),

which give us dη = 2((1 � a)ξ � ξ2)dξ, so

1

〈λ2〉
2b

∫
R

〈ξ〉2s−2κ χB3,2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ ≤

1

〈λ2〉
2b

∫
〈η〉≤4〈2λ〉

〈ξ〉2s−2κ−1

〈η〉2d
dη

≤
1

〈λ2〉
2b−2d

≤ c.

Now let us estimate (40). This is completely analogous to the previous estimate.

1

〈λ1〉
2b

∫
R

〈ξ〉2s−2κ χS3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2 ≤

1

〈λ1〉
2b

∫
〈η〉≤4〈λ1〉

〈ξ〉2s−2κ−1

〈η〉2d
dη

≤
1

〈λ1〉
2b−2d

≤ c.

This concludes the case κ ≥ 0.
The case κ < 0 will be separated into sub-cases:

1. Supposing |ξ1 | ≤
2
3 |ξ2 |, then, 〈ξ1〉

−2κ〈ξ2〉
−2κ ≤ 〈ξ2〉

−4κ . Moreover,|ξ2 | ≤ |ξ1 | + |ξ | ≤
2 |ξ2 |

3 + |ξ |,
hence |ξ2| ≤ 3|ξ |. Therefore,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

2. Supposing |ξ2 | ≤
2
3 |ξ1 |, we have the same result, that is,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

3. For the case, 2
3 |ξ2 | < |ξ1 | <

3
2 |ξ2 |, we need to do the following:

(a) If ξ1, ξ2 ≥ 0, then 2
3 ξ2 < ξ1 <

3
2 ξ2 =⇒

5
3 ξ2 < ξ <

5
2 ξ2. Hence,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

(b) If ξ1, ξ2 ≤ 0, then −2
3 ξ2 <−ξ1 <

−3
2 ξ2 =⇒

−5
3 ξ2 <−ξ <

−5
2 ξ2, so |ξ2 | <

3
5 |ξ |. Hence,

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ ≤ 〈ξ〉2s−4κ .

(c) If ξ1 > 0 and ξ2 < 0, then −2
3 ξ2 < ξ1 <

−3
2 ξ2 =⇒

1
3 ξ2 < ξ <

−1
2 ξ2, now |ξ | < 1

2 |ξ2 |.
(d) If ξ1 < 0 and ξ2 > 0, then 2

3 ξ2 <−ξ1 <
3
2 ξ2 =⇒

−1
3 ξ2 <−ξ <

1
2 ξ2, which give us |ξ | < 1

2 |ξ2 |.

The cases (1), (2), [3(a)], and [3(b)] are valid for κ < 0 and s < 2κ + 1
2 .

Indeed, let C ⊂R4 be the set of element R4 that satisfies one of the conditions (1), (2), [3(a)], or
[3(b)]. Now consider Ci =Si ∩ C.

Analyzing the restrictions on Ci, we get

1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χC1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤
1

〈λ〉2d

∫
R

〈ξ〉2s−4κ χC1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2

≤
1

〈λ〉2d

∫
R

〈ξ〉2s−4κ−1

〈η〉2b
dξ2

≤ c, because 1/2 < b< 1 and s < 2κ + 1/2.

1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χC2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ ≤

1

〈λ2〉
2b

∫
〈η〉≤4〈λ2〉

〈ξ〉2s−4κ−1

〈η〉2d
dη

≤
1

〈λ2〉
2b−2d

≤ c.
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1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χC3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2 ≤

1

〈λ1〉
2b

∫
〈η〉≤4〈λ1〉

〈ξ〉2s−4κ−1

〈η〉2d
dη

≤
1

〈λ1〉
2b−2d

≤ c.

Consider D=R4 \C and Di =Si ∩D. To obtain the other cases (which is equivalent to supposing
|ξ | < 1

2 |ξ2 | and |ξ1| ∼ |ξ2|) let us consider the regions Di.
We begin by estimating J4.

1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χD1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤
1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−4κ χD1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2

≤
1

〈λ〉2d

∫
R

〈ξ〉2s〈ξ1〉
−2κ

〈η〉2b
dη.

Now, |ξ2 − ξ | ≥ |ξ2 | − |ξ | ≥
1
2 |ξ2 | ∼

1
2 |ξ1 |.

Hence, J4 ≤ 〈ξ〉
2s−4d〈ξ1〉

−4κ−1
∫R

dη

〈η〉2b
, the right-hand side is bounded because 2b > 1,

2s ≤ 4κ + 2, and 1/4 < d < 1/2 in addition,

〈ξ〉2s−4d〈ξ1〉
−4κ−1 ≤ 〈ξ〉2s−4κ−1−4d ≤ 〈ξ〉1−4d .

Estimating J5:

J5 =
1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χB2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ

≤
1

〈λ2〉
2b

∫
R

〈ξ〉2s〈ξ2〉
−4κ χB2

〈τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2〉

2d
dξ.

Setting η = τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2, which give dη = 2(ξ2 + (a � 1)ξ)dξ. As 0 < a < 1

2 , we have
|a � 1| ≤ 1 and therefore |ξ2 + (a − 1)ξ | ≥ 1

2 |ξ2 |. Also we note that

|η | = |τ2 + (a − 1)ξ2 − ξ2
2 + 2ξξ2 |

= |(λ2) + ((a − 1)ξ2 − 2ξ2
2 + 2ξξ2)|

≤ |λ2 | + |(a − 1)ξ2 − 2ξ2
2 + 2ξξ2 | ≤ |τ2 + ξ2 | + 4|ξ2 |

2

≤ c|λ2 |.

Hence,

J5 ≤
1

〈λ2〉
2b

∫
〈η〉≤c〈λ2〉

〈ξ〉2s〈ξ2〉
−4κ−1

〈η〉2d
dη

≤
1

〈λ2〉
2b

∫
〈η〉≤c〈λ2〉

〈ξ2〉
max{0,2s}−4κ−1

〈η〉2d
dη because |ξ | <

1
2
|ξ2 |

≤ 〈ξ2〉
max{0,2s}−4κ−1 〈λ2〉

1−2d

〈λ2〉
2b

≤ 〈ξ2〉
max{0,2s}−4κ−1〈λ2〉

1−2d−2b ≤ 〈ξ2〉
max{0,2s}−4κ−2.

Since 1 � 2b � 2d < �1/2.
Now, we estimate J6. Remembering that

J6 =
1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−2κ〈ξ2〉

−2κ χB3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2

≤
1

〈λ1〉
2b

∫
R

〈ξ〉2s〈ξ1〉
−4κ χB3

〈τ1 + aξ2 + ξ2
2〉

2d
dξ2.
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Using η = τ1 + aξ2 + ξ2
2 , which give dη = 2ξ2dξ2. Now,

|η | = |τ1 + aξ2 + ξ2
2 |

= |(λ1) + (aξ2 + ξ2
2 − ξ

2
1)|

≤ c|λ1 |.

By using the fact that |ξ1| ∼ |ξ2|, we have

J6 ≤
1

〈λ1〉
2b

∫
〈η〉≤c〈λ1〉

〈ξ〉2s〈ξ1〉
−4κ

|ξ1 |〈η〉2d
dξ2

≤ 〈ξ1〉
max{0,2s}−4κ−1 〈λ1〉

1−2d

〈λ1〉
2b

≤ 〈ξ1〉
max{0,2s}−4κ−2.

And this finishes the proof of Proposition 4. �

Remark 3. The lines s = �κ � 1/2 and s = 2κ + 1/2 intersect each other at the point κ =− 1
3 .

C. Bilinear estimates for σ = 2

Next we prove a new bilinear estimates for the interaction terms in the case σ = 2

Proposition 5. Assume that a = 1/2 (equivalently σ = 2). If 1/2 < b < 3/4, 1/4 < d < 1/2 and |κ|
≤ s, then for u ∈ Xκ ,b and v ∈ Xs,b

a , the estimate below

‖u · v ‖Xκ ,−d ≤C‖u‖Xκ ,b · ‖v ‖Xs,b (41)

holds.
The second bilinear estimate tells us that

Proposition 6. Let a = 1/2 (equivalently σ = 2) and u, ũ ∈ Xκ ,b, then

‖u · ũ‖Xs,−d ≤C‖u‖Xκ ,b · ‖ũ‖Xκ ,b (42)

holds if 1/2 < b < 3/4, 1/4 < d < 1/2 and 0 ≤ s ≤ κ.

Proof of Proposition 5: We begin by noting that

|ω − ω1 − ω2 | =
�����
ξ2 + ξ2

1 −
1
2
ξ2

2

�����

=
�����
2ξ2 + 2ξξ2 +

1
2
ξ2

2

�����

= 2
�����
ξ +

1
2
ξ2

�����

2

.

In this case, we do not have to take the dispersion relation. Then, we consider R1 =R4 and
R2 =R3 =∅. Thus, we only need to prove that J1 is bounded. If |κ| ≤ s, then J1 is equivalent to

1

〈ω〉2d

∫
|ξ2 | ≤1

1

〈τ − 1
2 ξ

2
2 − 2ξξ2 + ξ2〉2b

dξ2 ≤ c,

since b > 1/2 and d > 0. This finishes the proof of the proposition. �

Proof of Proposition 6: As in the previous case, we cannot take advantage of the dispersion
relation. So let us take S1 =R4 and S2 =S3 =∅. Note that it is enough to estimate J4. Initially assume
that κ ≥ 0, so we get 〈ξ1〉

−2κ〈ξ2〉
−2κ ≤ 〈ξ〉−2κ

J4 ≤
1

〈λ〉2d

∫
R

〈ξ〉2s−2κ χS1

〈τ + ξ2
2 − 2ξξ2 + ξ2〉2b

dξ2.

Finally, since s ≤ κ, b > 1/2, and d > 0, we conclude that J4 is bounded. �
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IV. LOCAL EXISTENCE FOR LOW REGULARITY DATA

In this section, we prove, by using the Banach Fixed Point Theorem, the result of local well-
posedness. We only show the case 0 < a < 1/2 because the others follow the similar arguments.

Consider the following functional space where we will get our solution

ΣµB

{
(u, v) ∈ Xκ, 1

2 +µ × X
s, 1

2 +µ
a ; ‖u‖

Xκ , 1
2 +µ ≤M1, ‖v ‖

X
s, 1

2 +µ
a

≤M2

}
, (43)

where 0 < µ� 1 and M1, M2 > 0 will be chosen after.
We note that Σµ is a complete metric space with the standard norm

‖(u, v)‖Σµ B ‖u‖Xκ , 1
2 +µ + ‖v ‖

X
s, 1

2 +µ
a

. (44)

For (u, v) ∈ Σµ, we define the maps

Φ1(u, v)=ψ1(t)eit∂2
x u0 − iψT (t)

∫ t

0
ei(t−t′)∂2

x
{
θu(t ′) − (u · v)(t ′)

}
dt ′, (45)

Φ2(u, v)=ψ1(t)eiat∂2
x v0 − iψT (t)

∫ t

0
eia(t−t′)∂2

x

{
αv(t ′) −

a
2

(
u2

)
(t ′)

}
dt ′. (46)

We will choose µ < µ(κ, s), where d = 1
2 − 2µ(κ, s) and b= 1

2 + µ(κ, s) satisfy the conditions of
Propositions 1 and 2.

According to Lemma 1, with b′ = �d and Propositions 1 and 2, we have

‖Φ1(u, v)‖
Xκ , 1

2 +µ ≤ c0‖u0‖Hκ + c1Tµ
(
θ‖u‖

Xκ ,− 1
2 +2µ + ‖uv ‖

Xκ ,− 1
2 +2µ

)
≤ c0‖u0‖Hκ + c1Tµ

(
θ‖u‖

Xκ , 1
2 +µ + ‖u‖

Xκ , 1
2 +µ ‖v ‖

X
s, 1

2 +µ
a

)
≤ c0‖u0‖Hκ + c1Tµ

(
θM1 + M1M2

)
,

‖Φ2(u, v)‖
X

s, 1
2 +µ

a

≤ c0‖v0‖Hs + c2Tµ
(
α‖v ‖

X
s,− 1

2 +2µ
a

+
a
2




u2


Xκ ,− 1
2 +2µ

)
≤ c0‖v0‖Hs + c2Tµ

(
α‖v ‖

X
s, 1

2 +µ
a

+
a
2
‖u‖2

Xκ , 1
2 +µ

)
≤ c0‖v0‖Hs + c2Tµ

(
αM2 +

a
2

M2
1

)
.

Defining M1 = 2c0‖u0‖Hk and M2 = 2c0‖v0‖Hs , we have the following equations:

‖Φ1(u, v)‖
Xκ , 1

2 +µ ≤
M1

2
+ c1Tµ

(
θM1 + M1M2

)
and

‖Φ2(u, v)‖
X

s, 1
2 +µ

a

≤
M2

2
+ c2Tµ

(
αM2 +

a
2

M2
1

)
.

Then (Φ1(u, v),Φ2(u, v)) ∈ Σµ for

Tµ ≤
1
2

min



1
c1(θ + M2)

,
M2

c2(αM2 + a
2 M2

1 )




. (47)

Similarly, we have that

‖Φ1(u, v) − Φ1(ũ, ṽ)‖
Xκ , 1

2 +µ ≤ c3(M1, M2)Tµ
(
‖u − ũ‖

Xκ , 1
2 +µ + ‖v − ṽ ‖

X
s, 1

2 +µ
a

)
,

‖Φ2(u, v) − Φ2(ũ, ṽ)‖
X

s, 1
2 +µ

a

≤ c4(M1, M2)Tµ
(
‖u − ũ‖

Xκ , 1
2 +µ + ‖v − ṽ ‖

X
s, 1

2 +µ
a

)
.
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Now, using (44) and inequalities above, we have







(
Φ1(u, v),Φ2(u, v)

)
−

(
Φ1(ũ, ṽ),Φ2(ũ, ṽ)

)



Σµ
≤

1
2
‖(u, v) − (ũ, ṽ)‖Σµ (48)

to

Tµ ≤
1
4

min

{
1

c3(M1, M2)
,

1
c4(M1, M2)

}
.

Therefore, the map Φ1 × Φ2:Σµ → Σµ is a contraction, and by the Fixed Point Theorem there is a
unique solution to the Cauchy problem for T satisfying (47) and (48).

◽

Remark 4. The case p = q = �1 can be treated by using the same ideas that in the case
p = q = 1, for any σ > 0.

Remark 5. The case p = �1 and q = 1 or p = 1 and q = �1 (for all σ > 0) is the same in the case
p = q = 1 for σ > 2.

V. GLOBAL WELL-POSEDNESS RESULTS

In this section, we will study the global well-posedness for system (49) below:




i∂tu + p∂2
x u − θu + uv = 0,

iσ∂tv + q∂2
x v − αv + 1

2 u2 = 0, t ∈ [−T , T ], x ∈R,

u(x, 0)= u0(x), v(x, 0)= v0(x), (u0, v0) ∈Hκ(R) × Hs(R),

(49)

where u and v are complex valued functions.
One of the interests in working with system of equations in physics is to obtain stability for

certain types of solutions. In this case, it is essential to have global well-posedness results.
Starting from the conservation law

E(u, v)(t)= ‖u‖2L2 + 2σ‖v ‖2L2 , (50)

it is known that if u and v are solutions of this system with initial conditions (u0, v0) ∈ L2 × L2, then
∀t ∈R, we have E(u, v)(t)=E(u, v)(0)= ‖u0‖

2
L2 + 2σ‖v0‖

2
L2 .

Our main result presented here is theorem 2.
To get the above result, we will follow the ideas presented in Refs. 4, 7, 16, and 8.
We note here that we did not explore the second quantity conserved for light regularities, for

example, greater than 1, i.e.,

H(u, v)(t)= p‖ux ‖
2
L2 + q‖vx ‖

2
L2 + θ‖u‖2L2 + α‖v ‖2L2 − Re〈u2, v〉L2 . (51)

A. Preliminary results

This section is devoted to the proof of the global well-posedness result stated in theorem 2 via
the I-method.

Let s ≤ 0 and N > 1 be fixed. Let us define the Fourier multiplier operator

Î−s
N u(ξ)= Îu(ξ)=m(ξ )̂u(ξ), m(ξ)=




1, |ξ | <N ,

N−s |ξ |s, |ξ | ≥ 2N ,
(52)

where m is a smooth non-negative function.

Lemma 3. The operator I applies Hs(R) 7−→L2. Moreover, the operator I commutes with
differential operators and Iu= Iu. That is,

1. ‖I(u)‖L2 ≤ cN−s‖u‖Hs ,
2. P(D)I(u)= I(P(D)u),

where P is a polynomial and D=
d

idx
is the differential operator.
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Proof. It follows from the definition of I and properties of the Fourier Transform. ◽

We will need the following.

Lemma 4 (Lemma 12.1 of Ref. 6). Let α0 > 0 and n ≥ 1. Suppose Z, X1, . . ., Xn are translation-
invariant Banach spaces and T is a translation invariant n�linear operator such that




Iα1 T (u1, . . . , un)


Z
≤ c

n∏
j=1




Iα1 uj



Xj

,

for all u1, . . ., un, 0 ≤ α ≤ α0. Then,




IαN T (u1, . . . , un)


Z
≤ c

n∏
j=1




IαN uj



Xj

,

for all u1, . . ., un, 0 ≤ α ≤ α0, and N ≥ 1. Here, the implied constant is independent of N.
Another essential result is

Lemma 5 (Lemma 5.1 of Ref. 8). We have





(
D1/2

x f
)
· g


L2

x,t
≤ c‖f ‖X0,1/2 ‖g‖X0,1/2 ,

if |ξ2|� |ξ1| for any |ξ1 | ∈ supp
(̂
f
)

and |ξ2 | ∈ supp
(̂
g
)
. Moreover, this estimate is true if f and/or g

is replaced by its complex conjugate in the left-hand side of the inequality.

Remark 6. The lemma above is valid replacing X0,1/2 by X0,1/2
a .

B. Local well-posedness revisited

Now, we take N � 1 a sufficiently large integer and we denote by I the operator IB I−s
N for a

given s ∈R.
We have that system (49) applied to the operator I is given by




i∂tIu + p∂2
x Iu − θIu + I(uv) = 0,

iσ∂tIv + q∂2
x Iv − αIv + 1

2 I
(
u2

)
= 0.

(53)

Let us state here a lemma that will be used to demonstrate the local well-posedness theorem and
then re-obtain the bilinear estimates.

Lemma 6. Given �1/2 < b′ ≤ b < 1/2, s ∈R, a ≥ 0, and 0 < T < 1, the estimate below

‖ψT (t)u‖Xs,b′
a
≤ cTb−b′ ‖u‖Xs,b

a
(54)

holds.

Proof. See Ref. 10. ◽

Lemma 7. If 1/4 < d, for b1, b2 ∈R such that (b1, b2)=
(
0, 1

2 +
)

or (b1, b2)=
(

1
2 +, 0

)
, then

‖u · v ‖X0,−d ≤ c‖u‖X0,b1 · ‖v ‖X0,b2
a

. (55)

Proof. Without loss of generality, let us prove only the case b2 = 0 and b1 =
1
2 + . Following the

ideas from Proposition 1, it follows that

‖u · v ‖X0,−d ≤ ‖u‖X0,b1 ‖v ‖X0,b1









1

〈τ2 + aξ2
2〉

2b2

∫
R2

1

〈τ1 − ξ
2
1〉

2b1〈τ + ξ2〉2d
dξdτ







L∞ξ2,τ2

.



071515-20 Isnaldo Isaac Barbosa J. Math. Phys. 59, 071515 (2018)

On the right-hand side of the inequality above, using Lemma 16 and Lemma 17, we have that∫
R2

1

〈τ1 − ξ
2
1〉

2b1〈τ + ξ2〉2d
dξdτ ≤

∫
R2

1

〈τ2 + 2ξ2 + ξ2
2 − 2ξξ2〉

2d
dξdτ ≤ c.

◽

Analogously, we prove the lemma below.

Lemma 8. Consider 1/4 < d. Given b1, b2 ∈R such that (b1, b2)=
(
0, 1

2 +
)

or (b1, b2)=
(

1
2 +, 0

)
.

Then
‖uw‖X0,−d

a
≤ c‖u‖X0,b1 · ‖w‖X0,b2 . (56)

Remark 7. The above results are independent of the value of a > 0.

Now let us revisit the fixed-point theorem to find the best exponent for δ.

Proposition 7. For all (u0, v0) ∈ Hs × Hs and s ≥ − 1
4 and 0 < a < 1

2 or s ≥ − 1
2 and a > 1

2 , system
(53) has a unique local-in-time solution (u(t), v(t)) defined on the time interval [0, δ] for some δ ≤ 1
satisfying

δ ∼
(
‖Iu0‖L2

x
+ ‖Iv0‖L2

x

)− 4
3 +

. (57)

Furthermore, ‖Iu0‖X0,1/2+ + ‖Iv0‖X0,1/2+
a
≤ c

(
‖Iu0‖L2 + ‖Iv0‖L2

)
.

Proof. Using the Lemmas 3-8 the proof follows in a similar way to the Proposition 5.5 of
Ref. 8. ◽

C. Almost conservation of the modified energy

Let us consider the energy E associated with the system (53)

E(Iu, Iv)= ‖Iu‖2L2 + 2σ‖Iv ‖2L2 . (58)

Theorem 3. The functional energy (58) was derived with respect to the time given by

d
dt

E(Iu, Iv)= 2Im

{∫
(I(uv) − IuIv)) Iudx

}
+ 2Im

{∫ (
I(u2) − (Iu)2

)
Ivdx

}
.

Proof. Also using the following fact
∫

f · ∂2
x f =

∫
|∂x f |2, we get

d
dt

E(Iu, Iv)=
∫
∂tIu · Iu +

∫
Iu · ∂tIu + 2σ

∫
∂tIv · Iv + 2σ

∫
Iv · ∂tIv

=−2Im

{∫
(I(uv) − IuIv) · Iu

}
+ 2Im

{∫ (
I(u2) − (Iu)2

)
· Iv

}
.

◽

From now on δ =
(
‖Iu‖L2 + ‖Iv ‖L2

)−4/3. Let us now estimate the modified energy. Using the
fundamental theorem of calculus, we have

E(Iu, Iv)(δ) − E(Iu, Iv)(0)= 2Im
∫ δ

0

(∫
(I(uv) − IuIv)) Iudx

)
dt

= 2Im
∫ δ

0

〈
(I(uv) − IuIv)∧; Îu

〉
L2

dt

+2Im
∫ δ

0

〈(
I(u2) − (Iu)2

)∧
; Îv

〉
L2

dt.
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Observe that

(I(uv) − IuIv)∧ =m(ξ)û · v − Îu ∗ Îv

=

∫
Îu(ξ1) Îv(ξ2)

(
m(ξ) − m(ξ1)m(ξ2)

m(ξ1)m(ξ2)

)
dξ1

and (
I(u2) − (Iu)2

)∧
=m(ξ)û2 − Îu ∗ Îu

=

∫
Îu(ξ1) Îu(ξ2)

(
m(ξ) − m(ξ1)m(ξ2)

m(ξ1)m(ξ2)

)
dξ1.

Therefore,∫ δ

0

〈
(I(uv) − IuIv)∧; Îu

〉
L2

dt =
∫ δ

0

∫
Rξ

∫
Rξ1

Îu(ξ1) Îv(ξ2) Îu(ξ)M(ξ, ξ1)dξ1 dξ dt,

analogously, we have that∫ δ

0

〈(
I(u2) − (Iu)2

)∧
; Îv

〉
L2

dt =
∫ δ

0

∫
Rξ

∫
Rξ1

Îu(ξ1) Îu(ξ2) Îv(ξ)M(ξ, ξ1)dξ1 dξ dt,

where M(ξ, ξ1)=

(
m(ξ) − m(ξ1)m(ξ2)

m(ξ1)m(ξ2)

)
.

We note that fixed N > 1, |ξ1| ∼ N1, and |ξ2| ∼ N2, we have

(i) If 2|ξ1| ≤ |ξ2| and 2|ξ1| ≤ N, then |M(ξ, ξ1)| . N1
N2

.

(ii) If 2|ξ2| ≤ |ξ1| and 2|ξ2| ≤ N, then |M(ξ, ξ1)| . N2
N1

.

(iii) If 2|ξ1| ≤ |ξ2| and |ξ1| ≥ 2N, then |M(ξ, ξ1)| . N1
N .

(iv) If 2|ξ2| ≤ |ξ1| and |ξ2| ≥ 2N, then |M(ξ, ξ1)| . N2
N .

(v) If |ξ1| ∼ |ξ2| & N, then |M(ξ, ξ1)| .
(

N1
N

)2
.

By the symmetry of the variables, it is sufficient to verify only the statements (i), (iii), and (v).
We will use the fact that m′(ξ) = �N |ξ |�2.
In the first case, as |ξ1|� N, we get m(ξ1) = 1, hence

|M(ξ, ξ1)| =
�����
m(ξ1 + ξ2) − m(ξ2)

m(ξ2)

�����
∼

�����
m′(ξ2)|ξ1 |

m(ξ2)

�����
.

N1

N2
.

Still, to verify the item (iii), we observe that 1
2 |ξ2 | ≤ |ξ1 + ξ2 | ≤ 2|ξ2 | and thereby,

m(ξ1 + ξ2) − m(ξ1)m(ξ2)
m(ξ2)

=
N |ξ1 + ξ2 |

−1 − N |ξ2 |
−1N |ξ1 |

−1

N |ξ2 |
−1

=
|ξ2 |

|ξ1 + ξ2 |
−

N
|ξ1 |

≤ 2 −
N
|ξ1 |
∼ 1.

Then, (iii) follows easily from observation that M(ξ, ξ1)∼
1

m(ξ1)
=

N1

N
.

The last case follows from the fact that

m(ξ1 + ξ2) − m(ξ1)m(ξ2) =N |ξ1 + ξ2 |
−1 − N2 |ξ1 |

−1 |ξ2 |
−1

∼N

(
1

2|ξ1 |
−

N

|ξ1 |
2

)
=

N
2|ξ1 |

|ξ1 | − 2N
|ξ1 |

∼ 1.
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Therefore, M(ξ, ξ1)∼ 1
m(ξ1)m(ξ2) ∼

(
N1

N

)2

.

Considering

L1 = 2Im
∫ δ

0

∫
Rξ

∫
Rξ1

Îu(ξ1) Îv(ξ2) Îu(ξ)M(ξ, ξ1)dξ1 dξ dt (59)

and

L2 = 2Im
∫ δ

0

∫
Rξ

∫
Rξ1

Îu(ξ1) Îu(ξ2) Îv(ξ)M(ξ, ξ1)dξ1 dξ dt, (60)

we get
|E(Iu, Iv)(δ) − E(Iu, Iv)(0)| = |L1 + L2 |.

Proposition 8. For σ > 2 and s ≥ �1/2, we have

|E(Iu, Iv)(δ) − E(Iu, Iv)(0)| ≤N−
1
2 δ

1
2 ‖I(u)‖2

X0, 1
2 +
‖I(v)‖

X0, 1
2 + . (61)

Proof. It is enough to estimate L1 and L2. We still note that L1 and L2 are equivalent. In this
case, let us restrict ourselves to estimating L1. Let us use the notation |ξ | = |ξ1 + ξ2| ∼ N3

For 2|ξ1| ≤ |ξ2| and 2|ξ1| ≤ N such that |M(ξ, ξ1)| . N1
N2

. Then, from Lemmas 5 and 6, we see that

|L1 | ≤

(
N1

N2

)1/2


D1/2
x Îu(ξ1) · Îv(ξ2)


L2




Îu


L2

≤

(
N1

N2

)1/2

N−1/2
3




Îu


X0,1/2+




Îv


X0,1/2+δ
1/2


Îu


X0,1/2+

≤N−1/2δ1/2‖I(u)‖2
X0, 1

2 +
‖I(v)‖

X0, 1
2 + .

The case (ii), that is, 2|ξ2| ≤ |ξ1| and 2|ξ2| ≤ N follow by the symmetry of the variables.

In the proof of cases (iii) and (iv), when s = �1/2 such that |M(ξ, ξ1)| .
(

N1
N

)1/2

|L1 | ≤

(
N1

N

)1/2


D1/2
x Îu(ξ1) · Îv(ξ2)


L2




Îu


L2

≤

(
N1

N

)1/2

N−1/2
3




Îu


X0,1/2+




Îv


X0,1/2+δ
1/2


Îu


X0,1/2+

≤N−1/2δ1/2‖I(u)‖2
X0, 1

2 +
‖I(v)‖

X0, 1
2 + .

For the last case, we have |M(ξ, ξ1)| . N1
N , when |ξ1| ∼ |ξ2| & N, thereby, |ξ1| ≤ 2|ξ |, and it implies

|L1 | ≤
N1

N



D1/2

x Îu(ξ1) · Îv(ξ2)


L2




Îu


L2

≤
N1

N
N−1/2

1



Îu


X0,1/2+




Îv


X0,1/2+δ
1/2


Îu


X0,1/2+

≤N−1δ1/2‖I(u)‖2
X0, 1

2 +
‖I(v)‖

X0, 1
2 + .

Since |E(Iu, Iv)(δ) − E(Iu, Iv)(0)| = |L1 + L2 | ≤ |L1 | + |L2 | ≤ c|L1 |, we obtain

|E(Iu, Iv)(δ) − E(Iu, Iv)(0)| ≤ cN−1δ1/2‖I(u)‖2
X0, 1

2 +
‖I(v)‖

X0, 1
2 + .

◽

Following the same arguments presented above, we prove the following

Proposition 9. For 0 < σ < 2 and s ≥ �1/4, we have

|E(Iu, Iv)(δ) − E(Iu, Iv)(0)| ≤N−
1
4 δ

1
2 ‖I(u)‖2

X0, 1
2 +
‖I(v)‖

X0, 1
2 + . (62)

Proof. Analogous to the previous case. ◽
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D. Global existence

In this subsection, we will demonstrate Theorem 2.

Proof. Given the initial conditions of the Cauchy problem (49) (u0, v0) ∈ Hs × Hs such that

‖I(u0)‖L2 ≤ cN−s‖‖Hs and ‖I(v0)‖L2 ≤ cN−s‖v0‖Hs .

Applying the local well-posedness result of the Proposition 7, we see that there exists a unique
solution in the time interval [0, δ], where δ ∼ N�4s/3 and such that

‖I(u)‖
X0, 1

2 + + ‖I(v)‖
X0, 1

2 + ≤ cN−s.

For σ > 2 and s ≥ − 1
2 and using the Proposition 8, we have

|E(Iu, Iv)(δ) − E(Iu, Iv)(0)| ≤N−
1
2 δ

1
2 N−3s.

We should now prove that for every T > 0 we can extend our solution to the range [0, T ]. In
order to do it, it is enough to apply the local well-posedness Theorem7 until we reach this interval,
that is, T /δ times. If the modified energy does not grow more than the initial one for this number of
interactions, we can conclude that the result is extended up to the interval [0, T ], that is, we should
have

|E(Iu, Iv)(δ) − E(Iu, Iv)(0)|
T
δ
�E(Iu0, Iv0). (63)

Therefore, it is sufficient that

N−
1
2 δ

1
2 N−3s T

δ
�N−2s or N−

1
2 δ−

1
2 N−3sT �N−2s. (64)

Hence we conclude that − 1
2 − 3s + 2s

3 ≤ −2s because δ�1/2 ∼ N2s/3. It turns out that for any
s ≥ �1/2 we can extend the solution at any time interval by taking 1� N.

The proof of the other case (0 < σ < 2) follows similarly.
◽

The theorem showed in this section tells us that the solution of the Cauchy problem extends
globally, in time, in the sense that it connects the points (0, 0) and (�1/2, �1/2) when σ > 2 and the
points (0, 0) and (�1/4, �1/4) in the case 0 < σ < 2.
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